Tag archieven: railinfrabeheer

Het Spoor bijster (Witboek Spoor, 2012)

20_29_ING20_21_Dossier

Onderhoudsmedewerkers zijn in opdracht van ProRail bezig een wissel in het spooremplacement van Amsterdam Centraal vrij te maken van sneeuw en ijs.

Een uniforme Europese richtlijn voor marktwerking op het spoor werkt niet. De zuivere toepassing van die richtlijn veronderstelt splitsing van het (nationale) spoorbedrijf in een aparte railinfrabeheerder en een treinenbedrijf. Maar het is ook zonder plitsing mogelijk ruimte op het spoor te scheppen voor (buitenlandse) concurrenten. Volledige scheiding leidt er toe dat railinfrabeheerder en vervoerder elkaar kunnen tegenwerken waardoor de kosten van het vervoer als geheel stijgen. Het opsporen en elimineren van zulke foute prikkels is beter dan de splitsing weer helemaal terug te draaien.

Zie hier in kort bestek de bevindingen van de eerste grote internationale studie naar marktwerking op het spoor: EVES (Economic Effects of Vertical Separation in the railway sector) in opdracht van de Community of European Railway and Infrastructure Companies (CER) door adviesbureau inno-V (Amsterdam), de universiteit van Leeds (UK), Kobe (Japan) Vrije Universiteit (Amsterdam) en Civity Management Consultants (Duitsland). Volgens een van de auteurs, drs. Didier van de Velde (econoom, directeur van adviesbureau ‘inno-V’ en als onderzoeker werkzaam aan faculteit Techniek, Bestuur en Management van de TU-Delft) is het onderzoek de aanzet tot het ontwikkelen van een methodologie om foute prikkels (in het rapport incentive misalignments genoemd) op te sporen.

Lovers_Nico_Spilt
Lovers Rail ging van 1996 tot 1999 tevergeefs de concurrentie aan met NS. Het werkt niet om meerdere vervoerders te laten concurreren op hetzelfde railnet, zeker als dat druk is bereden, aldus de EVES-studie.

Minder wissels, digitale seinen, een nationaal metronet…Er is van alles te bedenken om het Nederlandse spoor beter, moderner en efficiënter te maken en minder gevoelig voor storingen, dus beter voorbereid op de winter. Dat was het idee achter onze oproep in het nummer van 31 augustus 2012 om ideeën aan te dragen voor een Witboek Spoor: een handleiding voor de nieuwe Tweede Kamer en regering om toekomstgericht met het spoor aan de slag te gaan. Maar dat alles werkt alleen als de ‘governance’ (de juridisch-economische vormgeving van de sector) klopt, blijkt uit de studie.‘NS op dood spoor’, opende De Telegraaf op 29 september in de bekende chocoladeletters. De krant had de hand weten te leggen op een ‘uiterst geheime’ winteranalyse van Prorail en de NS. De conclusie: het is niet zozeer de techniek die faalt als het een dag flink sneeuwt in de Randstad als wel de communicatie en vooral de organisatie. Er is dan volgens de Telegraaf ‘Een totaal gebrek aan overzicht’. Het klassieke apocriefe voorbeeld is dat van de machinist die vroeger met een gasbrandertje uitstapte om een vastgevroren wissel te ontdooien en die nu Prorail belt om een storingsmonteur te laten komen, wat uren duurt waardoor de hele dienstregeling instort.

De spoorsector was tot 1995 een geïntegreerd bedrijf en heet nu NS reizigers, Prorail, Movares, Strukton. ‘Met deze splitsingen is een zeer complexe situatie ontstaan met grote onderlinge belangentegenstellingen’, schrijft de commissie onder leiding van Tweede Kamerlid Attje Kuiken in het rapport Parlementair onderzoek onderhoud en innovatie spoor. ‘Hierdoor werd de kennis over de infrastructuur versnipperd’ ‘Het gebrek aan kwaliteit en kennis vormt een chronisch probleem binnen Prorail.’

Als splitsing kennelijk zo rampzalig uitpakt, dan ligt het voor de hand van Prorail en NS weer een bedrijf te maken. Dat gaat echter voorbij aan het feit dat de splitsing bedoeld is om met name de NS in staat te stellen om commerciëler te gaan werken. Daarvoor moest het een puur treinenbedrijf worden dat zich zou concentreren op reizigersvervoer. De exploitatie daarvan zou voor de staat als enige aandeelhouder en concessieverlener in elk geval transparanter worden.

Met meer grip op de zaak zou het rijk de subsidie kunnen gaan afbouwen. In 1990 ontving NS 1,4 miljard gulden subsidie. Tegenwoordig krijgt NS geen subsidie meer. Er was nog een tweede aanleiding voor de ‘verzelfstandiging’: de Europese richtlijn 91/440/EG beoogde elke nationale spoorwegmaatschappij te splitsen in een infrabedrijf en een treinenbedrijf. Dat luidde de ‘liberalisatie’ in naar een grenzeloze Europese markt met concurrentie. Die is maar zeer ten dele van de grond gekomen.

De Europese Commissie is volgens Van de Velde verblind geweest door het succes van de liberalisatie in de luchtvaart. ‘Luchtvaart is veel minder complex. Als een vliegtuig niet kan vertrekken hebben andere vliegtuigen daar geen last van. Een kapotte trein blokkeert direct het baanvak. Dat betekent nog al wat als je concurrerende bedrijven met treinen op hetzelfde netwerk wilt laten rijden. Vliegtuigen pendelen op en neer, treinen doen meerdere stations aan. Als je concurrentie tussen treinen op hetzelfde traject hebt, een kaartje koopt bij vervoerder A en je mist diens trein en de eerstvolgende trein is van vervoerder B, dan kun je daar niet zomaar in stappen. Gegeven het feit dat de trein in veel gevallen met de auto moet concurreren, is dat niet per se handig. Het vliegtuig heeft niet zo’n concurrent van een andere vervoersmodaliteit, tenzij tussen Europese steden de TGV.’

Dat de Europese Commissie voor alle lidstaten dezelfde standaardoplossing in petto had, is vanuit het idee van een open markt wel begrijpelijk, alleen pakt die oplossing in verschillende landen met zeer verschillende spoorregimes telkens anders uit. Er is volgens Van de Velde niet een oplossing die goed werkt voor de zo verschillende nationale situaties. ‘En dat hoeft ook helemaal niet.’ Dat marktwerking alleen kan ontstaan door het opsplitsen van nationale geïntegreerde spoorbedrijven noemt hij ‘dogmatisch en kortzichtig’. In Duitsland maken DB Netz en DB Bahn deel uit van DB Holding en toch werkt de regelgeving zodanig dat ‘Netz’ andere vervoerders dan ‘Bahn’ ruimte geeft op het spoor. Van de Velde: ‘De Duitsers hebben zogenaamde ‘Chinese Walls’ geplaatst tussen de dienst van DB Netz die spoorcapaciteit toewijst en de rest van DB. Maar het mooiste voorbeeld van onafhankelijke capaciteitstoewijzing vind je in Zwitserland, waar een geïntegreerd spoorbedrijf blijft bestaan (SBB), maar waar een relatief kleine onafhankelijke dienst ‘Trasse Schweiz’ de capaciteit verdeelt tussen SBB en concurrerende vervoerbedrijven.’

De richtlijn was ook zo open geformuleerd dat die in elk land anders kon worden toegepast. In feite stelt zij alleen een boekhoudkundige splitsing tussen treinexploitatie en infrastructuurmanagement verplicht en geen organisatorische of juridische afsplitsing van bedrijfsonderdelen. Volgens de commissie Kuiken is het binnen de Europese regelgeving toegestaan Prorail en NS onder één houdstermaatschappij te brengen.

In het Verenigd Koninkrijk en in Nederland is de verzelfstandiging het verst doorgevoerd. Niet alleen in Duitsland maar ook in Frankrijk is men minder ver gegaan. In Frankrijk is het railnet eveneens van de nationale spoorwegmaatschappij SNCF afgesplitst, in RFF (Reseau Ferré de France) maar daar werken slechts 1.200 mensen: SNCF beheert en onderhoudt de facto het hele Franse spoorwegnet terwijl RFF slechts optreedt als ‘manager’ die gebruikers (waarvan SNCF de grootste is) baancapaciteit toewijst. Overigens heeft de Franse regering recent aangekondigd dat RFF en SNCF zullen worden samengebracht onder één structuur, omdat men de afgelopen jaren tot de conclusie gekomen is dat de gesplitste structuur tot veel inefficiëntie en complexiteit had geleid.

De marktwerking komt er in heel Europa grosso modo op neer dat de railinfrabeheerder een prijs vraagt aan de vervoerders voor het gebruikmaken van rails terwijl in sommige landen de overheid vervoersconcessie verleent in de vorm van een prestatiecontract zoals NS met de overheid heeft. SNCF (Frankrijk), DB (Duitsland) en SJ (Zweden) werken zonder zo’n contract . Maar daar waar contractuele verhoudingen ontstaan, gaan partijen hun eigen belang nastreven en doen ook foute prikkels hun intrede die de kosten van het spoorvervoer verhogen in plaats van verlagen.

Het opleggen van verdere verticale splitsing verhoogt volgens het rapport de kosten met zes miljard euro per jaar en zelfs met 15 miljard als het spoorvervoer de groeidoelstelling van de Europese Commissie wil halen. Daarentegen lijkt ‘horizontale’ afsplitsing van het goederenvervoer de kosten juist te hebben verlaagd. Zulke structuurveranderingen hebben dus kosteneffecten maar de uiteindelijke concurrentie zélf lijkt geen enkel effecten te hebben op de kosten en dat noemt de studie ‘een verrassende bevinding.’

Voor al die verschillende situaties in diverse landen (wel of geen splitsing, horizontaal of verticaal, en de mate van splitsing) geldt dat het voor nieuwe toetreders even gemakkelijk (of zo men wil moeilijk) is om marktaandeel te veroveren op het van oudsher aanwezige staatsbedrijf. Een belangrijke voorwaarde is wel dat er een onafhankelijke ‘regulator’ bestaat en dat capaciteitstoewijzing op neutrale wijze plaatsvindt. Econometrisch onderzoek biedt verder aanwijzingen dat op zeer druk bereden netten verticale splitsing de kosten verhoogt terwijl op netwerken met een lage verkeersintensiteit de kosten juist lijken te dalen.

Splitsing is wel een potentiële bron van ‘afstemmingsschade’: als de ene partij zijn eigen belang nastreeft kan dat bij de andere partij tot schade leiden. Zo liet NS haar nieuwe treinstellen door Siemens uitrusten met minder, maar krachtiger motoren omdat dit goedkoper is. De grotere krachten tussen wiel en baan leiden echter tot meer schade aan de rails, waar Prorail voor opdraait. Het juridisch wegregelen van dit soort vaak onvoorziene verschijnselen is, zo blijkt uit de ervaringen in Groot Brittannië waar het meeste ervaring is met marktwerking (railnetwerkbeprijzing), een ‘gebed zonder end’. De marktwerking dreigt vast te lopen in juridisering. De contracten worden alsmaar dikker. Er is in Europa dan ook een tendens om dikke dichtgetimmerde contracten tussen materieelexploitanten en railinfrabeheerders te vervangen door overlegsituaties.

Dat is zelfs het geval in Groot Brittannië dat de privatisering van het spoor het eerst en het verst doorvoerde. Het leidde onder meer tot een enorm complexe tariefregeling van de infrabeheerder Network Rail richting treinbedrijven. Omdat die niet bleek te werken zijn er nu spoorvervoerders die voorstellen om ‘hun’ netwerk maar te leasen van Network Rail zodat ze het zelf kunnen beheren of anders een joint venture aangaan met de netwerkeigenaar om het beheer en onderhoud samen te doen. In elk geval is er al een gezamenlijk managementteam van South West Trains en de Wessex Route van Network Rail. In mei van dit jaar verscheen het rapport van een onderzoekscommissie onder leiding van sir Roy McNulty in opdracht van het Britse ministerie van Transport en the Office of Rail Regulation dat harde noten kraakt over het geprivatiseerde Britse spoor. De kosten liggen 30% boven het Europese gemiddelde.

Japan besloot in 1987 zijn nationale spoorwegmaatschappij te privatiseren maar deed dat door ze niet verticaal maar horizontaal te splitsen in zes regionale bedrijven die elk zowel spoor als rollend materieel bezitten. Daarnaast zijn er nog vijftien grote private vervoerders, die altijd al bestonden, en een honderdtal exploitanten van kleinere nevenlijnen. Japan wordt in de EVES-studie beschouwd als het Walhalla van doelmatigheid als het om spoorvervoer gaat. Het ‘integraal ’ denken gaat bij de Japanse spoorbedrijven zelfs zo ver dat zij al decennialang een lange termijnvisie hebben op de stedenbouwkundige ontwikkeling van stationslocaties. Deze strategie om woningen en winkels te ontwikkelen rond hun netwerk versterkt hun klantenbasis. Deze filosofie ‘breng de stad en daarmee de mensen naar het spoor toe’, zit sterk in de publicaties van de spoorplanoloog ir. Luca Bertolini (UvA) (zie kader)

In schril contrast daarmee staat de situatie in Zweden dat net als Nederland een infrabeheerder heeft en een treinenbedrijf. In Zweden wil de regering het nieuwe Europees gestandaardiseerde verkeersleidingssysteem en beveiligingssysteem ERTMS in voeren. (Zie onder meer De Ingenieur van….pagina….) De apparatuur van dit systeem bevindt zich niet meer zozeer langs de baan maar grotendeels in de trein. Uiteindelijk zal verkeersleiding en –beveiliging op het spoor zich ontwikkelen tot een Tom Tom-achtig concept: alle treinen weten draadloos waar zij zich ten opzichte van elkaar bevinden en herberekenen zelf voortdurend hun veiligheidsmarges, separatie, remweg en snelheid en dergelijke. Dit betekent echter hoge investeringen voor de vervoerders in boordapparatuur en lage investeringen (uiteindelijk: geen) voor de infrabeheerder in seinen langs en detectie in de baan. De vervoerders hebben daar geen zin in en dus verzandt de invoering van ERTMS in een patstelling. De splitsing van nationale spoorbedrijven in materieel en rail is het verst doorgevoerd in Groot Brittannië, Nederland, Spanje en Zweden.

In Zwitserland, dat geen lid is van de Europese Unie, is het grootste spoorbedrijf SBB niet gesplitst. Het is wel zo dat concurrenten op het netwerk van de SBB rijden en een volledig onafhankelijke instantie, Trasse Schweiz, bewaakt de landelijke dienstregeling en verdeelt de capaciteit van het railnet. Omdat het Zwitserse spoor net als het Nederlandse een extreem hoge benuttinggraad kent is in geval van een storing snel reageren geboden,‘zonder eerst met beschuldigende vingers te gaan wijzen’. De EVES-studie roemt de Zwitserse bereidheid tot overleg en samenwerking. De Zwitsers hanteren, wat Van de Velde noemt ‘een holistische benadering’. De ‘Zwitsers uurwerk’-benadering stelt keihard dat alle grote steden met een exacte uurdienst bediend moeten worden op exact het heel en het half uur. Vanuit die opdracht wordt op systeemniveau de techniek geoptimaliseerd: bochten rechttrekken om treinen zo nodig harder te kunnen laten rijden, maar ook kantelbakken om bochten sneller te kunnen nemen. Dat zijn variabelen waarmee ingenieurs kunnen spelen om het optimum te bereiken.

In Nederland is in 2010 het Operationele Controle Centrum Rail (OCCR) opgezet dat 24/7 bemand is en waarin naast Prorail, NS en Nedtrain – het onderhoudsbedrijf van NS – ook de overige railvervoerders en infra-aannemers deelnemen. Het doel is vooral te zorgen dat verstoringen in de dienstregeling zo snel mogelijk geïsoleerd worden om te voorkomen dat zij zich door het hele netwerk gaan voortplanten. Het is een eerste stap naar weer meer samenwerking maar het leidt nog niet tot de aanpak van de onderliggende problemen. Zo zou Prorail het aantal wissels willen verminderen omdat wissels dure, kwetsbare plekken in het spoor zijn. Maar dat benadeelt de kwaliteit van de huidige treindienstregeling: passagiers zullen vaker moeten overstappen. Het elimineren van wissels is de rode draad in veel conceptuele vernieuwing van het netwerk (zie kader). Die concepten gaan niet werken zolang systeemdenken niet wordt geïnstitutionaliseerd, zoals de Zwitsers doen.

Het weer op een lijn brengen van uiteenlopende deelbelangen is geen sinecure maar een werkbezoek aan om te beginnen Zwitserland en Japan kan nieuwe inzichten verschaffen. Tenslotte hoeft ook op het spoor het wiel niet opnieuw te worden uitgevonden.

[KADER ERTMS]

[FOTOBIJSCHRIFTEN]

SBB-ETCS_StW_EWIV
In de stuurcabine van de Zwitserse treinstellen van het type EW-iV van de SBB is ETCS level 2 geinstalleerd. (Foto: SBB)
B-broshure-forside
Bij ERTMS/ETCS level 2 staan de treinen draadloos met elkaar in verbinding en weten zij elkaars posities en ‘ziet’ de bestuurder de seinen op een beeldscherm in de cabine. Hij ziet daar ook het traject dat hij rijdt met alle benodigde informatie. (Bron: www.railway pro.com)
Met ERTMS meer vervoerscapaciteit

Zwitserland, Denemarken en België zijn volgens Bernhard Stamm, spoorveiligheidsdeskundige van Siemens, de enige drie landen waar is besloten het oude nationale beveiligingssysteem voor treinverkeer niet te laten voortbestaan naast de nieuwe Europese ERTMS-standaard. Dit European Rail Traffic Management Systeem behelst uniforme Europese afspraken over veiligheid op het spoor waarbij de technische definities vervat zijn in ETCS (European Train Control Systeem) dat vooral steunt op het draadloos uitwisselen van berichten via het mobiele telefoonnetwerk GSM-R (Rail) Elke trein staat via een ‘radio bloc centre’ (RBC) in verbinding met zijn voorligger, weet diens positie en stemt daar zijn rijgedrag op af.

Onder het ERTMS/ETCS-regime duiken Zwitserse treinen inmiddels met een snelheid van 200 km/h bij Frutigen de 35,5 kilometer lange en deels enkelsporige Lötschberg Basistunnel in waar zij halverwege een wissel passeren naar het dubbelsporige gedeelte. Vanwege het enkelsporige deel wordt treinverkeer beurtelings in beide richtingen ‘pakketsgewijs’ afgewikkeld waarbij meerdere treinen ‘vlak achter elkaar’ rijden, op een afstand van zes kilometer ofwel 1:48 min. Zoiets kan alleen met ERTMS/ETCS.

Hoewel de minister van Verkeer, Melanie Schultz, recent heeft besloten dat ERTMS ‘in principe’ ook in Nederland zal worden ingevoerd, is de wijze van invoering hier nog onduidelijk en een heet hangijzer. Zo is de Hanzelijn (zie De Ingenieur nr. 19) ook voorzien van het Nederlandse ATB omdat de treinen van NS alleen over ATB (Automatische Trein Beïnvloeding) beschikken.

De overgang van het deels nog analoge op relaistechniek gebaseerde ATB(-NG) naar het draadloze digitale ERTMS/ETCS is een beetje een ‘catch 22’-situatie waarbij baanbeheerder en vervoerder stoelendans spelen en de kat uit de boom kijken. Als de een niet meedoet heeft het voor de ander geen zin. Ook is investeren in ERTMS/ETCS onaantrekkelijk omdat je in de overgangssituatie met dubbele systemen (ATB en ERTMS) zit. Tenslotte zijn de investeringen voor de vervoerder veel hoger dan voor de baanbeheerder omdat het baansysteem verandert in een boordsysteem.

Uiteindelijk zal zich langs en in de baan niet of nauwelijks nog hardware bevinden in de vorm van seinen en balises, die het passeren van een trein signaleren. Er valt dan voor koperdieven niets meer te halen langs het spoor. Prorail heeft daar veel baat bij.

De kosten (voor NS) van de apparatuur aan boord daarentegen nemen juist toe. Bernhard Stamm, vergelijkt het nieuwe systeem met dat aan boord van vliegtuigen dat vliegers in staat stelt meesttijds‘blind’ te vliegen, op hun cockpitinstrumenten. Dat gaan treinbestuurders ook doen. Als een trein harder gaat dan 160 kilometer kunnen optische seinen langs de baan niet meer worden gelezen, zeker niet in het donker. Alle seinen, borden en ‘weginformatie’ (bochten, tunnels, overwegen e.d.) wordt daarom gepresenteerd op beeldscherm in de cabine. In ETCS zit een ‘supervisor’ die ingrijpt als de treinbestuurder zich niet aan de veilige snelheid houdt.

Daarmee dient zich het grote operationele voordeel aan van ERTMS/ETCS naast veiligheid: treinen kunnen harder en (veilig) dicht op elkaar rijden. Twee Nederlandse ERTMS-deskundigen, Jaap Van den Top en Arco Sierts vinden dan ook dat spoorbedrijven teveel kijken naar de lasten en te weinig naar de lusten. Nu moeten treinbestuurders eerst ‘wegbekendheid’ opdoen voordat zij een bepaald traject mogen rijden: waar zitten de bochten, wissels en dus snelheidsbeperkingen en dergelijke. Onder ERTMS/ETCS kan elke bestuurder direct elk traject rijden omdat alle relevante informatie ruim vooraf op een beeldscherm wordt gepresenteerd terwijl de European Vital Computer (EVC) ingrijpt indien de bestuurder veiligheidsmarges overschrijdt.

Maar daarnaast maakt ERTMS/ETCS treinspecifieke remcurvebewaking mogelijk en zeer korte blokken – afstanden tussen treinen – terwijl continue informatie-uitwisseling tussen verkeersleiding en trein het mogelijk maakt verkeersprocessen te optimaliseren. Te denken valt dan aan snelheidoptimalisering, het weergeven van de energieprestatie van de trein, het vanaf de verkeersleiding kunnen omroepen van berichten in de trein. Uit oogpunt van veiligheid doet ATB-NG (Nieuwe Generatie) niet onder voor ERTMS/ETCS maar uit oogpunt van optimalisatie van de totale treinvoering is het nieuwe systeem beter. Uiteindelijk kost ERTMS/ETCS de NS dus niet alleen geld maar valt er ook veel geld mee te verdienen.

De enige manier om zwartenpieten over ERTMS/ETCS tussen infrabeheerder en vervoerders te voorkomen is een analyse die op systeemniveau de voordelen duidelijk maakt en aan de hand waarvan de lasten en de lusten eerlijk kunnen worden verdeeld.

[KADER 3000V]

Sneller, zuiniger met 3000 volt

mg_7675
Met 3000 V gelijkstroom kunnen Nederlandse treinen met een snelheid van 200 km/h gaan rijden.
KADER3000kV
[KADER3000kV.jpg] De verschillende voltages in de Europese spoorwegnetten. 15 kilovolt wisselstroom in Duitsland,Zwitserland, Oostenrijk, Zweden en Noorwegen heeft van 16,7 herz zijn eigen opwekking en wordt apart van het normale stroomnet opgewekt.

Een aantal spoortechnici bij Movares, Arcadis, Strukton, Imtech, Kema, Nedtrain en Lloyd’s Register Rail heeft elkaar op informele basis gevonden om een voorstel voor de migratie naar een 3.000 volt gelijkstroom bovenleidingspanning uit te werken. Volgens hen kan dit zowel financieel als functioneel grote voordelen opleveren: Het levert 20% energiebesparing op. NS Reizigers verbruikt jaarlijks 1,2 miljard kilowattuur aan stroom en zou dus 240 miljoen kWh besparen. Dat komt overeen met het elektriciteitsverbruik van 500.000 huishoudens. Daarnaast stijgt de vervoerscapaciteit stijgt met 8-25% en treinen kunnen 160-200 km/h rijden. Met 3.000 volt kunnen de voordelen van ETCS, dichter op elkaar rijden, ten volle worden benut omdat treinen sneller kunnen optrekken.

Bij de herbouw na de Tweede Wereldoorlog is het Nederlandse spoorwegnet geëlektrificeerd met 1.500 volt gelijkspanning. Vanwege het maximaal beschikbare vermogen van circa 6MW, kost het veel tijd voordat een trein zijn maximumsnelheid bereikt. Het snelheidsverschil tussen stoptreinen en intercity’s is daardoor onnodig groot wat de benutting van de capaciteit van de infrastructuur beperkt.

Tegenwoordig remmen treinen elektromagnetisch: de remenergie wordt als stroom aan de bovenleiding teruggevoerd. Bij 1.500 volt kan de teruggeleverde elektriciteit slechts over en kleine afstand efficiënt worden getransporteerd. Wordt binnen die afstand geen afnemer gevonden, dan moet de teruggewonnen energie alsnog in weerstanden worden gedissipeerd. Zo gaat het grootste deel van deze potentiële energiebesparing verloren.

In de jaren ’90 is onderzocht of een omschakeling naar 25.000 volt wisselspanningtractie (25kVac) haalbaar zou zijn. Die spanning zou de nieuwe Europese standaard worden. Dat klopte voor hoge snelheidslijnen. Die hoge spanning is bij uitstek geschikt voor treinen met een hoog vermogen (tot 25MW) met grote afstanden tussen treinen.

25.000 volt wisselspanning is duur en ondoelmatig voor een spoorwegnet met hoge treindichtheden en lagere vermogens per trein (tot ca. 12MW). Maar de eerder genoemde beperkingen van 1.500 volt komen echter steeds duidelijker naar voren. In het kader van het Programma Hoogfrequent Spoor (PHS) is het de bedoeling op veel trajecten zes intercity’s plus zes stoptreinen per uur te gaan rijden. Met de invoering van ETCS worden hogere snelheden mogelijk. De energie om die snelheden met standaard intercity van 300m lengte binnen een redelijke tijd te bereiken is echter niet beschikbaar bij 1.500 volt.

Veel andere Europese landen met een druk bereden spoorwegnet gebruiken daarom een 3.000 volt gelijkstroomtractie. Dat systeem is op de hoogte van de spanning na identiek aan het Nederlandse. De verschillen beperken zich vrijwel uitsluitend tot apparatuur binnen de onderstations. De Nederlandse onderstations zijn in de meeste gevallen opgebouwd met een aantal parallelle gelijkrichters. In serie schakelen van deze gelijkrichters volstaat om de spanning naar 3.000V te verhogen. Of de bestaande schakelaars kunnen worden gehandhaafd moet nog worden onderzocht, verder zijn slechts kleine aanpassingen in de infrastructuur nodig.

Aanpassing van de treinen is complexer, maar met moderne vermogenselektronica goed realiseerbaar. Binnen de ruimte die ooit voor inbouw van 25kVac apparatuur was voorzien, kan een ‘voorschakel unit’ worden geplaatst die de hogere bovenleidingspanning omzet naar 1.800-1.950V. De rest van de materieelsystemen kan op die wijze onveranderd in gebruik blijven.

De ombouw naar 3.000V tractie-energievoorziening kost naar schatting 500 miljoen euro, veel minder dan de invoering van 25.000 volt wisselstroom. Door over te gaan op 3.000 volt gelijkstroom wordt een aanzienlijke energiebesparing bereikt en daarmee reductie van C02-emissie tot het equivalent van een flink windturbinepark. Gebruik die investering die bestemd is voor windmolens om de treinen op 3.000 volt te laten rijden. Die maatregel bespaart eveneens CO2, neutraliseert de horizonvervuiling van windmolens en zorgt tegelijkertijd voor een betere benutting van de infrastructuur en de mogelijkheid om harder te rijden.

[KADER MetroNL]

[FOTOBIJSCHRIFT]

[14_HSL BundelHSL.jpg] Ongelijkvloers kruisingen moeten de plaats innemen van wissels zodat spoorcorridors gescheiden zijn.(Foto: Prorail)

Geen wissels, geen dienstregeling

 

KADER_METRONL
[KADER_METRONL.jpg] Schematische weergave van het netwerkconcept van Eric Winter.(Ill. Ir. Eric Winter)

Bij referendum stelden de Zwitsers in 1987 de spoorvisie ‘Bahn 2000’ vast die zij sindsdien consequent hebben uitgerold en dat landelijk werkt als een Zwitsers uurwerk. Ir. Twan Laan, voormalig hoofd Economisch Bureau bij NS Reizigers en nu werkzaam bij de Zwitserse spoorwegen (SBB) vergelijkt Nederland en Zwitserland op zijn blog en bijdragen op webfora: ‘Als medewerker van de SBB – de Zwitserse evenknie van NS en ProRail – en als ex-medewerker van NS en ProRail denk ik dat wel weet waar ik over praat. Van de 1771 ritjes die ik de afgelopen drie jaar met de SBB maakte, hadden er precies 7 (0.4%) een kwartier vertraging of meer. In diezelfde periode maakte ik 323 ritjes met NS. Daarvan hadden er 21 (6,5%) een vertraging van 15 minuten of meer.’

De rode draad in de reacties die binnenkwamen na de oproep in nummer 13 om mee te denken over een beter spoor, is de complexiteit van het netwerk en de overmaat aan wissels die de storingsgevoelige plekken zijn. Om te beginnen moet dus eens kritisch worden gekeken naar het aantal wissels. Volgens ir. Eelke de Vries, die zijn hele werkzaam leven bij het spoor betrokken is geweest, ‘worden wissels willekeurig uitgedeeld terwijl niemand zich afvraagt of het wissel van de juiste hoekverhouding is voorzien en op de juiste plaats ligt.’ Wissels die de aankomende trein van het hoofd- naar het perronspoor brengen kunnen vaak met slechts 40 km/h worden bereden waardoor de trein ver voor het station moet afremmen en het hoofdspoor lang bezet houdt. De Vries heeft het emplacement van Utrecht CS zo herontworpen dat de aankomende treinen met 80 km/h van hun vrije baanspoor naar minstens drie perronsporen kunnen rijden waarbij het aantal wissels met driekwart is verminderd. Dit zou volgens De Vries op alle grote stations moeten gebeuren. Daarmee voorkom je dat treinen op wissels remmen of aanzetten, iets waar wissels slecht tegen kunnen.

Als het gaat om een fundamentele herziening van de Nederlandse spoorplanologie dan springen twee visies duidelijk in het oog. De ene visie is uitgewerkt door ir. Eric Winter in een lijvig rapport waarover hij publiceerde samen met ing. Martin van Pernis (president KIVI NIRIA) die voorheen als bestuursvoorzitter van Siemens Nederland was: Siemens is een van de grootste leveranciers van spoorbaanuitrusting en rollend materieel.

Het concept Metro NL van Winter voorziet in grote lijnen een netwerk van drie op zichzelf staande ringlijnen waarvan er twee een aftakking hebben naar respectievelijk Zeeland en Zuid-Limburg. Om het landelijke spoornet echt als een stedelijk metronet te kunnen gebruiken moet volgens Winter de frequentie en snelheid aanzienlijk omhoog en dat kan alleen met de zweeftreintechnologie van Transrapid, die door Siemens grotendeels is ontwikkeld. Deze maglev kan veel sneller optrekken dan een conventionele hoge snelheidstrein en kan dus ook op korte trajecten een snelheid van 300 km/h (of meer) halen. Winter en Van Pernis beschouwen Nederland in termen van openbaar vervoer niet als een land maar als een stad, met 16,5 miljoen inwoners even groot als de agglomeratie Parijs of Londen. Alleen: een zeer uitgestrekt en relatief dunbevolkte stad. Vandaar: snel vervoer. Zij situeren de stations als transferia met veel parkeergelegenheid vooral aan de rand van de stad waar autosnelwegen en spoorlijnen elkaar kruisen. Het ververvoer tussen station en stad gebeurt met snelle lightrail.

Een concept dat onlangs door Strukton en Movares is gepresenteerd, wil het spaghetti-achtige Nederlandse spoornet vereenvoudigen tot een aantal ‘corridors’, spoorlijnen die twee eindbestemmingen verbinden waarover treinen alleen maar heen en weer rijden. Waar deze corridors elkaar kruisen zijn geen ingewikkelde emplacementen met wissels maar slechts ongelijkvloerse kruisingen zodat de sporen van twee verschillende corridors altijd gescheiden zijn. De grote intercity-stations, op plekken waar corridors elkaar kruisen, zijn tevens de ’as’ of ‘naaf’ in een regionetwerk van waaruit spoorlijnen als ‘spaken’ in een denkbeeldig wiel uitwaaieren.

[Kader: HSL –Oost]

HSL-Oost is wél rendabel

HSLOost_HarjinderSingh027-c-amsterdamcs-02072012
Een mededelingenbord op Amsterdam Centraal kondigt het vertrek aan van de hogesnelheidstrein ICE naar Frankfurt.

Met de HSL-Zuid is Amsterdam een eindstation in het Europese hoge snelheidsnet terwijl het ooit de bedoeling was dat de hoofdstad aan een doorgaande verbinding tussen Parijs en Frankfurt zou komen te liggen. Maar het Centraal Planbureau (CPB) kwam in 2000 in een maatschappelijke Kosten-baten-analyse (mkba) tot de slotsom dat de aanleg van een hoge snelheidslijn Oost (HSL-Oost) niet rendabel is te krijgen: kosten € 2,4 miljard, baten nog geen € 500 miljoen. Ing. Henk Doeke van Waveren (werkzaam bij ingenieursadviesbureau Goudappel en Coffeng) studeerde in 2010 aan de Universiteit van Amsterdam als planoloog af op een integrale ontwerpmethode waarbij de HSL-Oost rendabel is aan te leggen wanneer je ook de verbinding vanuit het noorden van het land en vanuit Twente naar Arnhem verbetert. Dat genereert extra vervoer op de HSL-Oost naar de Randstad. Indicatie van de kosten: € 600 miljoen, en van de opbrengsten € 900 miljoen.

Het gaat om de verbinding Amsterdam-Utrecht-Arnhem via het Roergebied naar Frankfurt. Utrecht-Arnhem moet ingrijpend op de schop hoewel een volledige verdubbeling van twee naar vier sporen niet nodig is. Door de baanvaksnelheid geen 300 km/h maar 200 km/h te maken duurt de reis Amsterdam-Arnhem drie minuten (!) langer maar daardoor kan wel ander treinverkeer tussen de snelle treinen door worden geweven hetgeen de rentabiliteit van de spoorlijn behoorlijk verhoogd.

Doeke van Waveren bekeek ook de lange reistijd vanuit de Randstad naar Twente, vanuit Arnhem naar Twente en vanuit de Randstad via Ede en Arnhem naar Nijmegen. Het aanleggen van een verbindingsboog vanaf Zutphen, buiten Deventer om in de richting naar Almelo zorgt in combinatie met een baanvaksnelheid van 200 km/h voor een snelle verbinding tussen de Randstad en Twente (Enschede heeft een technische universiteit en veel hightech bedrijvigheid) Op het baanvak Utrecht-Arnhem dient dan wel het nieuwe beveiligingssysteem ERTMS ingevoerd te worden

(Synergie in railcorridors. Een onderzoek naar het integraal ontwerpen van railnetwerken. Drs. Ing. Henk Doeke van Waveren, 2010)

[KADER STATIONS]

De stationsstad

620734
[620734.jpg ] Onder de kap van het Madrileense Atocha Station is tegenwoordig een botanische tuin met kunstexpositie gehuisvest. Pal naast het station is een nieuw, groter, station gebouwd. (Foto: Kamil Macniak)

Stations worden steeds meer de brandpunten in de innovatieve en creatieve economie, betoogt de bouwkundige en planoloog ir. Luca Bertolini, hoogleraar aan de Universiteit van Amsterdam op het gebied van verkeer, vervoer en infrastructuur. Informatietechnologie verkleint niet de behoefte aan mobiliteit maar vergroot die juist. Mensen leggen steeds meer en steeds gemakkelijker contacten via nieuwe media en daaruit ontstaan ideeën en initiatieven die alleen vorm kunnen krijgen als mensen elkaar lijfelijk ontmoeten. In de nieuwe creatieve economie verdwijnen de vaste werkplekken en kantoren uit de negen-tot-vijf-economie en worden deze verruild voor ontmoetingsplekken. Het station is de ontmoetingsplek bij uitstek.

Er zijn een aantal trends die deze transitie, die al decennia aan de gang is, aandrijven. Vooral de jonge creatieve klasse wil in de compacte stad wonen. Ze vormen een ‘volatiele’ economie: werk en privé vloeien in elkaar over. Werken doe je niet per se op een vaste plek, doordeweeks van negen tot vijf bij een vaste werkgever maar nomadisch in voortdurend wisselende coalities. Planning maakt plaats voor impulsiviteit: Je gaat uit, je ontmoet mensen, je raakt aan de praat, er is een click en er komt een follow-up. Dus eigenlijk werd dat avondje stappen een vergadering, een brain storm. Werk of leisure? Het maakt twintigers en dertigers niet zoveel uit. Werken doe je onderweg. De trein is een uitgelezen plek om dat te doen. Maar een ding maakt ze wel uit: ze willen midden in het centrum wonen van de cultureel meest interessante stad.

050423 Kulturbahnhof Fieseler Storch
[FOTOBIJSCHRIFT] [050423 Kulturbahnhof Fieseler Storch.jpg] Het Station van Kassel (Duitsland) herbergt tal van culturele instellingen.(Foto: Hans-Joachim Wirth – www.abnachkassel.de)

De populariteit van de auto (als privébezit en statussymbool) en het suburbane ideaal van een huis met veel buitenruimte is bij deze generatie op zijn retour mede dankzij de mobiliteitsextensies van de trein zoals OV-Fiets (en inmiddels scooters!) en Greencars. Wonen vlakbij een groot station, zoals in Amsterdam op het Stationseiland of in de buurt (IJburg, Houthavens) wint aan populariteit. In grote oude stationsgebouwen zelf en op en rond spoorcomplexen ontstaat ruimte doordat oude kantoorfuncties en post- en goederenstations verdwijnen. Bertolini haalt het voorbeeld aan van het Madrileens Atocha Station, een kopstation waar een nieuw HSL-station is aangebouwd waarna onder de oude kap de sporen en perrons plaats maakten voor een overdekt stadsplein. Het voormalige centraal station van de Duitse stad Kassel is in 1995 verbouwd tot een station voor alleen nog regiotreinen, waarna er ruimte in het gebouw kwam voor een theater, bioscoop, expositiehal en dergelijke. (Kassel Kulturbahnhof). Het station als uitgaans- en ontmoetingsplek.

Een belangrijke katalysator in deze culturele renaissance van Europese stationssteden is de komst van de snelle railverbindingen tussen Europese stadsharten. Dit pleit eens te meer voor een volwaardige HSL-Oost (zie kader). Volgens Bertolini moeten we het station dan ook niet langer zien als louter een plek waar reizigers een reis beginnen of eindigen maar veel meer als een centrale ontmoetingsplek in de stad omdat daar nu eenmaal allemaal verkeersstromen elkaar kruisen.

(Luca Bertolini, Carey Curtis and John Renne: Station Area project in Europe and Beyond: Towards a Transit Oriented Development? In Built Environment vol 38, no 1. Luca Bertolini en Tejo Spit. Cities on rails – the redevelopment of railway station areas. E&FN SPON/Routledge, London, 1998, ISBN 0-203-98043-3 e-book en 0 419 22760 1 print)

[KADER Groene trein]

[FOTOBIJSCHRIFT] [intercity-in-onweersbui.jpg] Treinen groener maken is niet gemakkelijk; ze zijn al behoorlijk groen. (Foto: NS)

De Groene Trein
intercity-in-onweersbui
Het groener maken van treinen valt niet mee, omdat ze al behoorlijk milieuvriendelijk zijn.

Het lijkt niet waarschijnlijk dat treinen snel zullen ‘vergroenen’. Er is eerder veel meer milieuwinst te halen met invoering van ERTMS/ETCS en 3000 volt gelijkstroom voor de tractie. (zie kaders). Railforum, een vereniging van bedrijven en organisaties uit de railsector, publiceerde begin dit jaar een rapport over het terugdringen van het energieverbruik van treinen. Er kan wel iets, maar niet heel veel.

Om te beginnen gaan treinen dertig tot veertig jaar mee. Als ze in vijftien jaar konden worden afgeschreven, dan is het mogelijk eerder volgens de nieuwste inzichten ontworpen en gebouwde treinen te kopen. Zo’n nieuwe trein is ongeveer 5% zuiniger maar die winst wordt teniet gedaan door het sneller slopen en reclycen van het materiaal, wat immers ook energie kost.

Gewicht en aerodynamische vorm zijn de voornaamste factoren die het energieverbruik bepalen. Bij modernisering van bestaand materiaal valt via gewichtvermindering maximaal 0,5% energiebesparing te realiseren (Nieuwe treinstellen zijn vaak zelfs zwaarder door hogere veiligheid- en comforteisen.) Een gewichtvermindering van 100 kg levert slecht 0,07 % energiebesparing op. Een stalen casco bij nieuwbouw vervangen door aluminium levert 5% energiebesparing op, maar de reparatiekosten na een botsing zijn veel hoger en in menig geval is verwrongen aluminium niet te herstellen en moet de trein of tram worden afgeschreven: kost heel veel energie.

Beter stroomlijnen van treinen levert iets meer op: zo’n 2% als je bestaand materieel tijdens groot onderhoud flink onder handen neemt en zo’n 4% als je een trein nieuw kunt ontwerpen. Echter, met een slimme bedrijfsvoering valt wel 17% te besparen. Dan zorgt een trein er bijvoorbeeld voor dat hij een kwartier nadat hij niet meer wordt gebruikt automatisch in een ‘sluimertoestand’ schiet. Wat ook zoden aan de dijk zet is als de inbouw van systemen gebeurt met modules in een standaardafmeting. Technologie die bij de aanschaf van de trein nog niet betrouwbaar zijn maar wel veelbelovend, kan dan in een later stadium alsnog worden ingebouwd. Denk aan de IGBT-technologie (transistoren die hoge vermogens kunnen schakelen met zeer kleine microprocessorspanningen) of nieuwe LED-lichtarmaturen en accutechnologie.

(Railforum, februari 2012: Energieverbruik Treinen, inzicht en maatregelen).

HSL-ZUID LIGT OP COMPLEET ZETTINGSVRIJE SPOORBAAN +DE LANGSTE IN SLAPPE GROND GEBOORDE TUNNEL TER WERELD (2002 22/23)

 

p22-26 Dossier_1

 

Hier klikken voor de PDF van het artikel: p22-26 Dossier_1

mt_06

vls_11ZLANG1Gele tracékaart met kunstwerken

 

 

 

 

Het Dossier

HSL

Het grootste

infraproject

van Nederland

 

 

HSL-ZUID LIGT OP COMPLEET ZETTINGSVRIJE SPOORBAAN

 

Een pijl door het Groene Hart

 

De Hoge Snelheids Lijn-Zuid is het grootste Nederlandse verkeersproject ooit. Het traject is de ingrijpendste modernisering op het spoor sinds de vervanging van stoomtractie door elektrisch materieel. Bovendien komt de spoorbaan compleet zettingsvrij te liggen. Het pronkstuk is de in diameter grootste in slappe grond geboorde tunnel ter wereld. Hoe blijft zo’n project beheersbaar?

 

Elke tijd heeft zijn eigen techniek. De trein was tot ver in de twintigste eeuw de icoon van – letterlijke – vooruitgang. Meestal verbeeld door een reusachtige (stoom-)locomotief die op een reclameposter kwam aandenderen. Het vliegtuig nam na de oorlog die symboolfunctie over, maar heeft inmiddels zijn glans verloren. Op trajecten tot 600 km is een trein die een kruissnelheid haalt van 300 km/h en midden in de stad aankomt, superieur aan een vliegtuig in reistijd en comfort.

De Fransen hadden de Europese primeur van een hoge-snelheidsnet; in 1981 reed de eerste TGV van Parijs naar Lyon. Inmiddels hebben ook Duitsland, Italië en Spanje hoge-snelheidslijnen. De Europese spoorwegtechnologie is zelfs een exportartikel naar Noord-Amerika en Azië. Nederland is betrekkelijk laat, maar de aanleg van de HSL-Zuid is om een aantal redenen bijzonder. Zo is het project het grootste infra-karwei dat in ons land ooit ter hand is genomen: de aanleg kost volgens de laatste opgave 5,724 miljard euro. Het traject heeft een minimale boogstraal van 4500 m. Kleiner kan niet om hard te kunnen rijden. Het vermijden van scherper bochten vereiste echter nog al wat planologisch vernuft.

Bovendien – minstens zo belangrijk – is de bodemgesteldheid in West-Nederland uitermate beroerd. De spoorlijn moet zettingsvrij worden aangelegd: de constructie mag na aanleg over 100 m niet meer dan 0,5 cm zakken. Diepere ‘kuilen’ dan wel ‘hobbels’ brengen het risico met zich dat de trein uit de rails stuitert. De HSL-Zuid is daarom over vrijwel zijn gehele lengte onderheid met betonnen palen, waarop betonnen platen rusten waarop de rails worden bevestigd.

 

HOLLANDSCH DIEP

In het traject bevinden zich 170 kunstwerken, waarvan de boortunnel door het Groene Hart (zie pag. 26) en de brug over het Hollandsch Diep het meest tot de verbeelding spreken. Maar in feite is het hele traject vanwege de zettingsvrije aanleg op palen te beschouwen als een gigantisch aaneengesloten kunstwerk.

Bijzonder is dat in Nederland in één klap de topsnelheid van treinen omhoog gaat van 140 naar 300 km/h, terwijl dat in landen waar al veel langer snelle treinen rijden, veel geleidelijker is gegaan. Voorts gaat het voltage omhoog van 1500 V gelijkstroom naar 25 kV wisselstroom.

Internationaal heeft de wijze van aanbesteding van de bovenbouw, de spoorrails en alles wat zich daarnaast en boven bevindt aan installaties, veel aandacht getrokken. Het Britse tijdschrift Project Finance Magazine/Euromoney kende de contracten tussen de staat en het bouwconsortium Infraspeed (Siemens, BAM/NBM, Fluor Daniel en de beleggers Charterhouse en Innisfree) dit jaar twee prijzen toe: de European PPP deal of the Year (2001) en de European Deal of the Year Award. (PPP staat hier voor Public Private Partnership ofwel Publiek Private Samenwerking, PPS). Het is niet alleen het grootste PPS-contract (1,3 miljard euro) dat Nederland ooit gesloten heeft, het is tevens de grootste rail-PPS in Europa.

 

GARANTIE

Ir. Leendert Bouter, Hoofdingenieur Directeur (HID) van de Directie HSL-Zuid legt uit wat er zo speciaal aan is. ‘In het contract met Infraspeed is afgesproken dat de overheid niets financiert. Dat wordt door banken gedaan. Degene die bouwt, krijgt pas betaald op het moment dat het werk is opgeleverd. Dus Infraspeed is vijf jaar aan het bouwen met geleend geld van de bank. Over de opgenomen bouwkredieten rekent de bank rente die bij de schuld wordt opgeteld. Vanaf het moment van oplevering gaat de staat aan Infraspeed 25 jaar lang een jaarlijks bedrag betalen voor de beschikbaarheid van de spoorlijn. Infraspeed zal na oplevering van de bovenbouw namelijk het onderhoud van het gehele tracé  (onder- en bovenbouw) , het consortium dat de bovenbouw aanlegt, zal na oplevering ook het onderhoud van de onderbouw op zich nemen. op zich nemen. Het consortium heeft zich verplicht de spoorlijn kwalitatief zo te bouwen en te onderhouden dat er 99 % van de tijd treinen veilig en comfortabel met 300 km/h over kunnen rijden. Met dat bedrag moet Infraspeed al zijn kosten dekken: de investering plus de jaarlijkse onderhoudskosten. De staat heeft de zekerheid dat zij 25 jaar lang nooit méér hoeft te betalen dan dat bedrag. Dus al het risico is vervreemd van de staat.’

Wordt die 99%-eis niet gehaald, dan gaat er een strafkorting af van de bijdrage. Bij minder dan 94 % beschikbaarheid bedraagt de strafkorting al 80 %. Die 99 % moet de staat gezekerd hebben, want zij geeft een concessie aan een vervoerder: High Speed Alliance (NS en KLM).

Bouter: ‘Als je nu kijkt naar de staatsinkomsten gedurende die vijftien jaar dat de vervoersconcessie loopt en je vergelijkt dat met de uitgaven die we gedurende 25 jaar moeten betalen aan Infraspeed, dan rest er een positief saldo. De staat heeft de onderbouw grotendeels klassiek gefinancierd a fond perdu, maar kan de investeringslasten deels dekken met het positieve exploitatiesaldo van de bovenbouw.’

Als Infraspeed met de HSL onder de beschikbaarheidsnorm duikt levert zij dus wanprestatie en daardoor zou deze private onderneming failliet kunnen gaan. Boutert acht die kans echter niet groot. ‘De kans dat de vervoerder failliet gaat is misschien groter, omdat die vaste uitgaven heeft voor de concessie, terwijl de reizigersmarkt aan schommelingen onderhevig kan zijn. Maar alles bij elkaar genomen ben ik er van overtuigd dat het goed in elkaar zit.’ Het contract met de infraprovider wordt aangeduid als Design Build Finance and Maintenance (DBFM).

 

BEPROEFDE TECHNIEK

Het meest spectaculaire deel van die onderbouw is natuurlijk de boortunnel, die wordt gebouwd door de combinatie Bouygues/Koop. Civiel-ingenieur ir. Hans Burger was tot voor kort manager van het Projectbureau Noordelijk Holland. Acht jaar lang was hij bij de HSL-Zuid gedetacheerd via DHV Milieu en Infrastructuur. Hij legt uit hoe Rijkswaterstaat uiteindelijk de hele engineering kon uitbesteden aan de aannemer, maar toch voldoende greep houdt op de kwaliteit en de kosten van de tunnel.

‘We hebben eerst zelf een referentie-ontwerp gemaakt met twee buizen van 9,5 m intern. Dat is beproefde techniek. We hebben toen ook wel naar een grote tunneldiameter gekeken en ook naar een Double O-Tube(DOT)tunnel, zo’n bril – dan draaien twee koppen naast en achter elkaar. Maar we wilden geen bepaalde methode voorschrijven. Echter, om vergunningen aan te vragen heb je een conceptontwerp nodig. Dus we hebben een haalbaar concept genomen: twee gescheiden tunnelbuizen. Daar hebben we zelf het hele basisontwerp van uitgewerkt om voldoende alle risico’s die aan zo’n ontwerp zitten te kennen en om kostenramingen te doen.’

‘We hebben geen kant en klaar bestek aanbesteed, maar er een echte Design & Constructaanbesteding van gemaakt, waarin veel vrijheid zit voor de aannemer. En we hebben ook uitgelegd dat het basisontwerp van ons er puur is om de aannemer te helpen: hier zie je een aanpak. Zo hebben wij het gedaan. We dagen jullie uit om met andere ontwerpen te komen en met optimalisaties, bijvoorbeeld langer doorboren. Dat betekent immers minder hinder, minder heiwerk, minder grondtransport, minder werkwegen, kortere procedures en minder bezwaren van omwonenden.’

‘We zeiden: ons inziens moet een enkele buis met een hele grote diameter ook wel mogelijk zijn in plaats van twee buizen, maar dan moet je wel aantonen dat je in staat bent zoiets te maken. Onze inschatting was dat een grotere diameter nodig zou zijn dan nu wordt gebouwd. De aannemer die met dit ontwerp is gekomen, heeft echt alles geoptimaliseerd. Hij is tot het uiterste gegaan binnen het programma van eisen en is tot een relatief kleine tunnel gekomen voor een trein die er met zo’n hoge snelheid doorheen moet kunnen.’

 

HEIEN

Bij de aanbesteding kon de aannemer fictieve bonussen krijgen als hij zou aantonen te kunnen zorgen voor minder omgevingshinder. Zijn aanneemsom werd dan op papier verlaagd, zodat hij dan schijnbaar lager inschreef dan de overige mededingers. Het ging om de meest aantrekkelijke aanbieding in termen van geld én milieu. Dat uitkeren van ‘bonussen’ is ook gedaan voor de aspecten ‘risico’ en ‘veiligheid’. Burger: ‘Daardoor bleek dat we beter wat langer konden doorboren. Eerst zou de boormachine (die van noord naar zuid boort, red.) vóór de dijk bij Westeinde naar boven komen. Nu gaat hij onder de dijk door tot voorbij de bebouwing en pas daarna beginnen we met cut & cover-werk waarbij je ook moet heien – waarvan de omgeving hinder ondervindt. Aan de noordkant zijn we eerder gaan boren op geringe diepte. Daar hebben we eerst de klei en het veen uit het traject weggegraven en vervangen door zandcement vanwege de vereiste stabiliteit. Dat is al met al goedkoper dan cut & cover-werk, want daarvoor zou een hele diepe bouwput nodig zijn geweest en de kosten en risico’s lopen enorm op met de diepte van de put. Langer doorboren is dus gunstig uit oogpunt van kostenoptimalisatie en risicobeperking.’

 

PROJECTBUREAUS

Het projectbureau HSL-Zuid van Rijkswaterstaat bevindt zich in Zoetermeer. De grote leveranciers van ingenieurs aan dit projectbureau zijn het Amersfoortse ingenieursbureau DHV en het bureau Holland Railconsult. Honderden ingenieurs zijn jarenlang zo gedetacheerd bij de projectorganisatie. Op een zeker moment waren dat er bijna duizend. Nu de bouw volop aan de gang is, zijn het er nog enkele honderden.

Ing. Wim Knopperts, afkomstig van Railinfrabeheer, is directeur project- en inframanagement en geeft leiding aan zes projectmanagers van evenzovele projectbureaus. Want voor de beheersbaarheid moest het project ‘in stukken worden geknipt’. Er is een projectbureau Noordelijk Holland dat het gedeelte bestiert van Hoofddorp tot Hazerswoude-Dorp. Vanaf daar neemt ‘Zuid Holland-Midden’ het over tot aan de noordrand van Rotterdam. In de Maasstad rijdt de Thalys als een gewone trein op 1500 V over bestaand spoor. Vanaf de zuidkant van Rotterdam tot en met de brug over het Hollandsch Diep is het bureau ‘Zuid-Holland-Zuid’ verantwoordelijk voor de bouw. Vervolgens ‘doet’ het projectbureau ‘HSL-A16’ het resterende stuk tot aan de grens samen met de verbreding van de A16 naar 2×3 rijstroken. Het vijfde projectbureau zorgt voor de aansluiting op bestaand spoor bij Hoofddorp en Breda waar de trein, evenals in Rotterdam, door zogenoemde ‘spanningssluizen’ wordt geleid van 25 kV wisselstroom naar 1500 V gelijkstroom en vice versa. De hele elektrische aandrijving is daarom dubbel uitgevoerd. Dan is er nog een apart projectbureau voor het contractmanagement met Infraspeed, de zogenoemde infraprovider, en tenslotte is er een projectbureau ‘Vervoers- en Veiligheidssystemen’ dat het contract regelt met High Speed Alliance dat de treinen gaat laten rijden.

 

ZETTINGSVRIJ

Bijzonder is de toepassing van systems engineering, een methodologie voor het technisch-organisatorisch beheersbaar houden van grote complexe projecten die van origine bij NASA vandaan komt en eerder opgeld deed in de vliegtuigbouw en ruimtevaart.

Bijzonder is ook het Europese No Recess-onderzoek. No Recess (‘geen zetting’) is een acroniem voor New Options for Rapid and Easy Constructions of Embankment on Soft Soil. Het gaat om het zettingsvrij aanleggen middels andere technieken dan de vertrouwde heipaal tot op het pleistocene zand. Uiteindelijk zijn de resultaten maar op kleine schaal toegepast vanwege de tijd die het kostte om ze te valideren voor grootscheepse toepassing onder het spoor zelf. Alleen ten zuiden van het riviertje de Mark zou het spoor niet zettingsvrij kunnen worden aangelegd op een conventioneel ballastbed omdat de bodem daar stabieler is dan in West-Nederland. Dat is weliswaar goedkoper, maar de ervaring elders in Europa heeft geleerd dat de onderhoudskosten aanmerkelijk hoger zijn omdat de rails regelmatig moet worden ‘rechtgelegd’. En dat betekent ook minder beschikbaarheid. Infraspeed studeert nog op de definitieve bouwmethode.

KOPSTATION

De Belgen willen dat de Nederlanders op tijd klaar zijn omdat anders hun HSL doodloopt op de Nederlandse grens. Bouter: ‘In de overeenkomst tussen België en Nederland is afgesproken: 1 juni 2005. Wij zitten inmiddels op 1 oktober 2006 voor het stuk Rotterdam-Belgische grens, dus bij elkaar vijftien maanden later. En het stuk Amsterdam-Rotterdam zou altijd al een half jaar later klaar zijn, dus niet 1 juni 2005 maar 31 december 2005 en dat staat nu op april 2007.’

‘Bij ons is die vertraging onder meer ontstaan toen de politiek ineens besloot dat de verdiepte ligging bij Bergschenhoek nog dieper moet omdat anders de hellingbanen naar het viaduct dat er overheen moet komen te steil zouden worden voor gehandicapten. Voor die diepere ligging zijn we 22 miljoen Euro extra kwijt. Omdat we op dat moment het contract met Infraspeed nog moesten sluiten dachten we er goed aan te doen om daarin alvast een voorziening te treffen voor een eventuele vertraging zodat we niet direct met allerlei claims van infraspeed zouden worden geconfronteerd indien ook werkelijk vertraging zou ontstaan.’

Al met al is tegen de HSL-Zuid minder maatschappelijke weerstand geweest dan tegen de Betuwelijn waar Bouter voorheen projectdirecteur van was. De Betuwelijn zou volgens veel bezwaarmakers doodlopen op de Duitse grens. Maar de Duitse deelstaat Noordrijn Westphalen heeft nu besloten om vanaf Emmerich de Betuwelijn door te trekken.

Er komt geen HSL-Oost waardoor Amsterdam-CS straks een eindpunt is. Maar het bestaande traject Amsterdam-Utrecht-Arnhem is een vrijwel rechte lijn – in tegenstelling tot het bestaande spoortraject door west-Nederland. Knopperts ‘Dat kan dus in principe geschikt worden gemaakt voor snellere reistijd, deels door hogere snelheden dan normaal in Nederland, deels door capaciteitsvergroting.’

Kortom, ook na de oplevering van de HSL-Zuid is het spoorwegnet nog lang niet af.

 

 

 

 

 

(QUOTES)

 

De aanleg kost volgens de laatste opgave 5,4 miljard euro

 

 

De constructie mag na aanleg over 100 m niet meer dan 0,5 cm zakken

 

 

De rails liggen elk in een goot van uitgehard epoxy

 

 

Treinen kunnen gegarandeerd 99 % van de tijd veilig en comfortabel 300 km/h rijden

 

 

(FOTO”S)

(HOOFDPLAAT – foto 107 bouwwerkzaamheden)

 

Bouw van de noordelijke toerit naar boortunnel met de startschacht.

 

 

(mt-06.jpg)

 

Doorsnede van de boortunnel.

 

 

(cam.3.jpg)

 

Vluchtdeur in de tunnel onder de Oude Maas.

 

 

(vanafwater.jpg)

 

De HSL kruist het riviertje de Mark ten noorden van Breda.

 

 

(vls-11.jpg)

 

De tunnel met het trappenhuis in de verticale schacht.

 

 

infraproject

van Nederland

 

TEKST DRS. MARCEL CROK

TEKENINGEN DR.IR. ERIC VERDULT

FOTO’S Paul Attard/Bouygues Construction

 

 

DE LANGSTE IN SLAPPE GROND GEBOORDE TUNNEL TER WERELD

 

Dwars door de smurrie

 

De grootste tunnelboormachine ter wereld boort zich een weg onder het Groene Hart. De eerste grote hobbel van de langste in slappe grond geboorde tunnel ter wereld, de passage van een van de drie vluchtschachten, is met enige vertraging door het Frans/Nederlandse consortium Bouygues/Koop genomen. Nog even en na het baggeren, het heien en het afzinken van tunnels gaat ook onze kennis van boortunnels de grens over. Hollands glorie ondergronds.

 

Het eerste dat opvalt bij het afdalen naar de 20 m diepe startschacht voor de Groene Harttunnel is het ontbreken van een spoorlijntje. Bij andere Nederlandse boortunnels, zoals de Tweede Heinenoordtunnel, de Botlektunnel of de Westerscheldetunnel, werden tunnelsegmenten en grout met een treintje naar de tunnelboormachine (TBM) gebracht. Het consortium Bouygues/Koop maakt echter gebruik van een train sur pneus, een trein-op-banden. Deze truck, gemaakt door Metalliance, is aan beide zijden te besturen, want keren in de tunnel kan het gevaarte niet. ‘Het achterste deel van de truck volgt exact dezelfde lijn als het voorste deel, zodat de wagen gemakkelijk van baan kan veranderen zonder iets te beschadigen’, legt Louis Ballesteros van Bouygues uit.

Die precisie is nodig, want direct nadat de TBM 2 m heeft gegraven en er een nieuwe ring van tunnelsegmenten is aangebracht, gaat het afbouwen van de tunnel verder. Eerst wordt er een betonnen kokervormige technische galerij neergezet, waarin later leidingen komen te liggen. Deze wordt aan beide zijden aangevuld met een laag stabiliserend zand. Het gewicht van koker en zand is nodig om opdrijven van de tunnel tegen te gaan. Daar bovenop komt de gewapende betonvloer waarover vanaf 2007 de hogesnelheidstrein met 300 km/h zal razen. In het midden van de tunnel storten de uitvoerders de scheidingswand die de tunnelbuis moet verdelen in twee compartimenten. Normaal vindt de afbouw van de tunnel pas plaats als het boren helemaal is afgerond. Ballesteros: ‘Om tijd te winnen beginnen wij direct aan de afbouw. Dat stelt hoge eisen aan de logistiek.’

 

AURORA

Bonjour, bonjour’, klinkt het telkens als we mannen in de tunnel tegenkomen. Frans is de voertaal voor de voornamelijk Franse en Portugese tunnelbouwers, die in een paar jaar tijd de ruim 7 km tussen Leiderdorp en Hazerswoude ondergronds mogen afleggen. Een busje brengt ons 2 km de tunnel in naar wat je het episch centrum zou kunnen noemen. De laatste 120 meter naar het voorste deel van de tunnelboormachine Aurora mogen we lopend afleggen, want zo lang is de grootste TBM ter wereld. De oordopjes die we hebben meegekregen zijn overbodig, want de TBM staat stil. Dagelijks tussen acht en twaalf uur vindt er namelijk onderhoud plaats. De resterende twintig uur werken er twee ploegen. Steeds een uur graven en een uur segmenten aanbrengen, zodat er theoretisch gesproken zo’n 18 tot 20 m per dag kan worden afgelegd.

 

SCHEIDINGSWAND

Ze zullen wel even met hun wenkbrauwen gefronst hebben bij Bouygues, een van de grootste bouwbedrijven ter wereld, toen ze hoorden dat die gekke Nederlanders er bijna een miljard gulden voor over hadden om een stuk weiland in tact te houden. Maar opdracht is opdracht en toen directeur Koop van het Groningse bouwbedrijf Koop Tjuchem aanklopte bij de Fransen, lag er al snel een projectvoorstel op tafel. Bouygues werkte aan de Franse zijde aan de Kanaaltunnel en heeft de afgelopen jaren meer tunnels gebouwd in slappe grond, in Frankrijk, Sydney en Hongkong. De Franse projectdirecteur Joseph Harnois legt in het naast de bouwplaats gelegen kantoor van Bouygues/Koop uit waarom zijn consortium eind 1999 werd uitgekozen. ‘Wij hebben voor de metro in Sydney ook één tunnelbuis geboord met een scheidingswand ertussen. Het voordeel is dat je in totaal minder grond hoeft te boren, dat je minder ruimte kwijt bent bij de start- en ontvangstschacht en dat je gemakkelijker en dus frequenter vluchtgangen kunt aanbrengen. Bij de Westerscheldetunnel bijvoorbeeld waren kostbare vriestechnieken nodig om de grond tussen de twee tunnelbuizen te bevriezen voordat je een dwarsverbinding kunt boren.’

Bouygues bleef daardoor met zijn offerte (940 miljoen gulden) binnen de gestelde miljard gulden. Inmiddels is dit contract overigens alweer opengebroken. De tunnel wordt duurder, omdat een aantal betrokken gemeenten strengere veiligheidseisen heeft gesteld dan het ministerie van Verkeer en Waterstaat aanvankelijk deed.

 

AFZINKEN

De meeste tunnels in ons land kruisen waterwegen en daarvoor is het afzinken van geprefabriceerde tunnelelementen zeer geschikt. Nederland is met een dertigtal afgezonken tunnels wereldkampioen in deze categorie. Maar Nederland wordt voller en dat versterkt de roep om niet alleen bij waterwegen ondergronds te gaan. Het Centrum voor Ondergronds Bouwen, waarin overheid, universiteiten en bedrijfsleven vertegenwoordigd zijn, groeit en groeit. Er verschijnen steeds meer ondergrondse parkeergarages en winkelcentra en een logische stap is om ook infrastructuur vaker ondergronds aan te leggen, zodat het maaiveld vrij blijft voor andere doeleinden.

Geboord wordt er internationaal al meer dan 150 jaar. De Engelsman Isambard Brunel ontwierp in 1818 al een boorschild waarmee hij later – samen met zijn zoon Marc die bijna verdronk bij een doorbraak – een tunnel boorde onder de Thames door, die nog altijd in gebruik is. Inmiddels zijn er wereldwijd duizenden tunnels geboord.

Begin jaren negentig nog wilde de Nederlandse overheid niets weten van tunnels boren in de slappe Nederlandse bodem. Minister May-Weggen veegde plannen voor een ondergrondse Betuwelijn van tafel. Het kon technisch niet vanwege de slappe bodem, aldus het ministerie, en het zou bovendien te duur zijn. Een studiereis van Grondmechanica Delft naar Japan in 1992 weerlegde de argumenten van May-Weggen. Japan heeft ook een slappe bodem, maar kent inmiddels een indrukwekkende ondergrondse infrastructuur. In 1997 startte het boortunneltijdperk in Nederland met het boren van de Tweede Heinenoordtunnel (voor fietsers en tractoren) ten zuiden van Rotterdam. Daarna werd het tempo opgevoerd. In de Betuweroute zijn drie boortunnels opgenomen, de Botlekspoortunnel, de Sophia-spoortunnel en de spoortunnel onder het Pannerdensch Kanaal. Het boren van de 6,6 km lange Westerscheldetunnel is dit jaar afgerond en Bouygues/Koop heeft inmiddels ruim 2 van de 7 km van de Groene Harttunnel geboord.

 

GRONDWATER

Waarom is boren in de slappe Nederlandse bodem zo moeilijk? Het antwoord is met één woord samen te vatten: water. De grondwaterspiegel ligt in grote delen van Nederland slechts 1 à 2 m onder het maaiveld. Elke kuil van enige diepte begint meteen vol te lopen met grondwater. De traditionele aanpak in Nederland voor ondergrondse constructies op land is: graaf een put die minstens zo diep is als het laagste punt van de constructie en ga daarin bouwen. Probleem is alleen dat zo’n drijvende bak een enorme opwaartse kracht ondervindt van het grondwater. Door continu het water uit de omgeving van de bouwput weg te pompen krijg je de boel droog. Vrijwel overal in Nederland is beïnvloeding van de grondwaterstand tegenwoordig echter verboden. Ingenieurs bouwen daarom dure bouwputten met vloeren van onderwaterbeton waardoor er geen beïnvloeding van de waterstand optreedt.

Bij de aanleg van de metro in Rotterdam en Amsterdam lagen straten langdurig open en moesten vele huizen verdwijnen. Het gebruik van open bouwputten (sleuven) voor tunnels onder stedelijke gebieden is anno 2002 daarom niet meer te accepteren. Onlangs is de knoop doorgehakt om de Noord-zuidlijn onder Amsterdam te boren en bij de Groene Harttunnel is ook gekozen voor boren om het landschap zoveel mogelijk te ontzien.

 

Bentoniet

De eerste 12 m grond onder het Groene Hart bestaat uit een zeer slappe laag klei en veen. Daaronder volgt een zandpakket van ongeveer 20 m dikte. Beneden 30/35 m NAP begint een dichte kleilaag, de laag van Kedichem. De Groene Harttunnel komt vrijwel volledig in de zandlaag te liggen. Voor het boren in niet-cohesieve grondsoorten (zand valt uit elkaar als je gaat graven) gebruiken ingenieurs de zogenaamde slurryschildmethode. Om te voorkomen dat het ontgraven gat direct weer volstroomt met grond en water, wordt de grond voor het graafwiel van de tunnelboormachine met een speciale brij, bentoniet, onder druk gehouden. Bentoniet is een mengsel van klei en water in een verhouding van 1:20. In beweging gedraagt de slurry zich als een vloeistof, waardoor transport gemakkelijk is, in rust geeft het mengsel steun aan de af te graven zandlaag. Aannemers beschouwen de samenstelling van hun bentonietmengsel als het geheim van de smid. Bouygues wil niet meer loslaten dan dat hun bentoniet wordt gekocht in Egypte. Tijdens het boorproces is maar liefst 2500 m3 bentoniet per uur nodig. Een scheidingsinstallatie bij de tunnelingang probeert zoveel mogelijk kleideeltjes terug te winnen uit het afgegraven mengsel van zand en bentoniet.

Alle boortunnels in Nederland met uitzondering van de Botlekspoortunnel zijn geboord met een slurryschild. De Botlektunnel bevindt zich in een gebied met lagen van zand, klei en veen. Vanwege de uiteenlopende bodemgesteldheid was het Earth Pressure Balance-schild (gronddrukbalansschild) geschikter om mee te boren. Ook hier is een tunnelboormachine gebruikt maar dan zonder bentoniet. Met de grond zelf en het gebruik van bijvoorbeeld schuim wordt voldoende steundruk verkregen om instorting te voorkomen.

 

Wereldrecord

De Groene Harttunnel is de vijfde Nederlandse tunnel die met een slurryschild wordt geboord. Uniek is wel de diameter van de door het Franse NFM Technologies gebouwde tunnelboormachine: 14,9 m. Een grotere is er in de wereld niet te vinden, alhoewel de machine voor de vierde Elbetunnel in Hamburg met een buitendiameter van 14,2 dicht in de buurt kwam. Projectdirecteur Harnois loopt ook niet zo te koop met dit wereldrecord. Hij vindt het veel belangrijker dat Bouygues als een van de weinige bouwgiganten in de wereld nog een eigen engineering afdeling heeft. Bouygues kan daarom zowel tunnelboormachines als tunnels ontwerpen en bouwen. Daarmee is het bedrijf letterlijk geknipt voor de design & construct-opdracht die de Projectorganisatie HSL-Zuid had uitgeschreven. Civiel-technisch ingenieur Robert Jan Aartsen houdt namens HSL-Zuid als uitvoeringsbegeleider het boorproces in de gaten. Wat vindt hij nou bijzonder aan de Groene Harttunnel? ‘Uniek in dit project zijn de diameter van de tunnelbuis, de logistiek en de passage van de TBM door de drie tunnelschachten. De logistiek is een opgave omdat er continu grote hoeveelheden materiaal naar de TBM gebracht moeten worden, terwijl daarachter de tunnel direct wordt afgebouwd. Elke ring in de tunnel bestaat uit tien 2 m brede tunnelsegmenten, negen grote segmenten en een kleinere sluitsteen. In totaal zijn ongeveer 36 000 segmenten nodig. De grote segmenten wegen 14,5 ton. Ze worden gemaakt in het Belgische Amay in een fabriek van Bouygues en komen via Maas en Oude Rijn tot op enkele kilometers van de startschacht. Vandaar gaat het per vrachtwagen verder, twee segmenten per ritje. In de tunnel passen zes segmenten op een trein-op-banden. Bij de TBM worden de segmenten in de juiste volgorde opgepakt en op een transportband gezet waarna de erector de segmenten een voor een met een vacuümsysteem oppakt en op de gewenste positie in de ring plaatst. Daarnaast moet er per tunnelring 20 kuub grout naar de TBM worden getransporteerd. Met grout wordt de ruimte gevuld tussen de stalen ring van de TBM en de buitenkant van de tunnelring. Ondertussen moet de afbouw van de tunnel gewoon doorgaan. Vlak achter de TBM moeten de kokervormige galerijen neergezet worden en aan beide zijden worden aangevuld met een laag gestabiliseerd zand. Dichtbij de startschacht duurt het transport niet lang, maar straks als de tunnel bijna klaar is zijn de transportwagens een half uur bezig om bij de TBM te komen. De grote logistieke uitdaging staat Bouygues nog te wachten.’

 

Franse school

Het gebruik van prefab tunnelsegmenten is standaard bij TBM’s. Toch kijken de Nederlandse ingenieurs met belangstelling toe hoe de Franse segmenten van hogesterktebeton (B 62,5) het houden. De andere Nederlandse tunnels zijn gebouwd met Duitse partners. De Duitsers hebben een andere filosofie bij zowel het bouwen als het installeren van de segmenten. Die aanpak is historisch gegroeid, ontdekte ir. Kees Blom tijdens zijn promotieonderzoek aan de TU Delft. Blom werkt voor Holland Railconsult (HR), maar op kosten van HR, TNO en Rijkswaterstaat mocht hij wat meer fundamenteel in het ontwerp van tunnels duiken. Blom: ‘De Duitsers gebruiken zogenaamde nok-holteverbindingen. Het ene segment heeft een uitsteeksel, het volgende segment een holte waarin het uitsteeksel past. Het voordeel van zo’n verbinding is tevens zijn nadeel. De nok-holteverbinding voorkomt extreme verschuivingen van segmenten en zo mogelijk lekkages. Als de nokken gaan aanliggen, treedt er echter wel schade op aan de segmenten, wat tot extra onderhoudskosten leidt. De Franse school gebruikt vlakke profielen. De segmenten lopen daardoor minder schade op, maar het risico van grote vervormingen is groter. Dat kan beschadiging van de rubberprofielen, die het water bij de voegen moeten tegenhouden, tot gevolg hebben. ‘Na twee kilometer boren is hier overigens nog geen sprake van’, aldus Ballesteros. ‘Bij vorige tunnels hebben we gemerkt dat de nok-holteverbinding geen functie heeft. Dan kun je hem beter weglaten. Van belang is dat de segmenten met een nauwkeurigheid van 0,3 mm gemaakt worden, niet beschadigen tijdens transport en zeer nauwkeurig worden geplaatst.’

 

Vijzels

De tien segmenten van een ring in de Groene Harttunnel worden met behulp van negentien vijzelparen tegen de voorlaatste ring gedrukt. Door zich vervolgens af te zetten tegen de segmenten brengen de vijzels het boorschild weer in beweging voor het afgraven van de volgende 2 m. Volgens de Duitse traditie staat er een vijzelpaar op de voeg tussen twee segmenten, dan een precies in het midden van een segment, vervolgens een op de voeg, enzovoorts. De Fransen plaatsen geen vijzels op de voegen, maar een paar op een kwart en een op driekwart van de steen. Hier neigt Blom, onpartijdig in deze, licht naar de Franse school. Blom: ‘Een campingtafel op vier even lange poten staat bij het kamperen altijd scheef. Met drie staat-ie echter altijd recht. Iets dergelijks gebeurt bij het vastzetten van de segmenten. Met twee vijzelparen op een steen zijn de krachten uniform verdeeld. Met drie is dat niet het geval. Een ander nadeel van de Duitse methode is dat als twee segmenten niet helemaal op gelijke hoogte liggen, de vijzel op de voeg het ene segment meer zal belasten dan het andere. Er kan dan een holte ontstaan bij de voeg.’

 

Export

Amper tien jaar houdt Nederland zich nu bezig met het boren van tunnels in slappe bodem en de vraag is welke positie ons land internationaal inneemt. Blom heeft daar wel enige notie van. De aanvragen voor zijn binnenkort te verschijnen proefschrift stromen uit de hele wereld binnen. Blom: ‘Onze tunnels worden door buitenlandse bedrijven geboord. Je wilt als overheid met die partijen inhoudelijke discussies kunnen voeren, dus is de afgelopen jaren veel onderzoek gedaan. Ook vrij fundamenteel onderzoek. Wat blijkt dan? Die bedrijven boren al zo lang met succes tunnels dat veel fundamentele vragen helemaal niet meer gesteld worden. Er is bijvoorbeeld een soort wet die zegt dat de diameter van de tunnel gedeeld door 21 de dikte van de segmenten oplevert. In formule: D/21 = dikte segment. Bedrijven hanteren die formule voor de gebruiksfase van de tunnel. Een van de verrassende resultaten uit mijn onderzoek is dat die wetmatigheid inderdaad klopt, maar niet geldt voor de gebruiksfase van de tunnel maar voor de bouwfase.’

Volgens Blom blijkt in veel gevallen de bouwfase van de tunnel maatgevend te zijn voor de dimensionering van de tunnel. ‘Japanners geven inmiddels ook toe dat ze problemen hebben in de bouwfase. Een ongewenste situatie want de bouwfase duurt slechts dagen, terwijl de tunnel daarna honderd jaar mee moet. Krachten die in de bouwfase een rol spelen, zijn onder andere de vijzels, de geïnstalleerde ringen en de groutlaag. Grout is een viscoplastisch materiaal, een soort pasta, dat de afgegraven zandlaag buiten de tunnelwand moet vervangen. Grout wordt vanuit het boorschild op vier of zes plaatsen onder druk naar buiten gebracht. Hoe de vloeibare pasta zich daar precies gedraagt, is moeilijk te voorspellen. Uit mijn onderzoek blijkt dat de groutlaag een aanzienlijke opwaartse kracht kan veroorzaken die maatgevend is tijdens de bouwfase. Een logische stap is nu om nieuwe groutsoorten te ontwikkelen of andere injectiemethoden, waardoor de belasting op de tunnelring afneemt. Uiteindelijk moet de gebruiksfase van de tunnel maatgevend worden voor de dimensionering van de tunnel. Een afnemende dikte van de segmenten levert veel geld op, want het betonwerk beslaat 30 % van alle kosten.’

 

(FOTO’S)

 

(OPENINGSPLAAT)

 

De tunnelboormachine in opbouw in de startschacht, najaar 2001.

 

(TUNNEL MET GALLERIJ)

 

Vlak achter de TBM wordt een kokervormige galerij neergezet, die aan beide zijden wordt aangevuld met een laag gestabiliseerd zand. De koker en het zand voorkomen dat de tunnel gaat opdrijven.

 

(VIJZELS)

 

Elk segment wordt met twee vijzelparen tegen de voorgaande tunnelring aangedrukt.

 

(TRAIN SUR PNEUS)

 

Een trein-op-banden brengt de segmenten van de startschacht naar de TBM.

 

(TUNNEL MET BUIZEN)

 

Via dikke buizen wordt per uur 2500 kuub bentonietslurry naar de TBM gebracht. Via de tweede buis gaat het mengsel van zand en bentoniet weer terug naar het bouwterrein van Bouygues/Koop, alwaar het bentoniet wordt teruggewonnen.

 

(ACHTHOVEN)

 

De 40 m diepe tunnelschacht Achthoven. Deze schacht werd tot halverwege gevuld met lagesterktebeton. De TBM heeft zich vervolgens een weg geboord door dit beton.

 

(BRIEVENBUS)

 

De ingenieurs van Bouygues/Koop hadden een spleet aangebracht in de betonnen prop (zie tekening D) in de tunnelschacht. Dit maakte het mogelijk om onder atmosferische omstandigheden onderhoud te plegen aan de boorkop.

 

 

 

(KADER EEN + TEKENING SCHACHT E. VERDULT)

 

ELEGANTE KOPPELING VAN TUNNEL EN SCHACHT

 

Het meest kritieke onderdeel tijdens het boren van de Groene Harttunnel, geeft ook patron Harnois toe, is het passeren van de drie onderhouds-, vlucht- en luchtschachten. Deze naar hun locatie vernoemde tunnelschachten Achthoven, (rijksweg) N11 en Bent staan op respectievelijk 2, 4 en 6 km van de startschacht. Achthoven is net door de TBM gepasseerd, maar dat ging niet zonder slag of stoot. De TBM stond drie maanden geparkeerd, voordat de tunnelschacht letterlijk voldoende gewicht had om de passage van de boormachine te kunnen doorstaan zonder als een champagnekurk gelanceerd te worden. De TBM boorde sneller dan verwacht. De ruwbouw van de schacht verliep trager vanwege een gewijzigd ontwerp.

De koppeling van tunnel en tunnelschachten is elegant en niet eerder gebruikt. Eerst graaft het consortium, na het aanbrengen van diepwanden, een groot rond gat met een diameter van 30 m en een diepte van 40 m. Dat gat wordt onder water weer half volgestort met eerst een betonvloer (B30) en daar bovenop een laag lagesterktebeton (B5). Door die laag beton mag de TBM zich dan een weg boren. ‘Probleem is alleen dat die betonnen schacht niet verankerd is aan de omringende grond met bijvoorbeeld palen en dus drijft in het pakket van veen, zand en klei’, zegt ing. Stef Slingerland van de Projectorganisatie HSL-Zuid. ‘Het is moeilijk om die grote dobber op zijn plek te houden terwijl de TBM grote krachten op de betonnen prop uitoefent.’

Daarnaast had Bouygues een soort brievenbus in het lagesterktebeton aangebracht. Die gleuf maakt het mogelijk om tijdens de passage van de TBM onder atmosferische omstandigheden onderhoud aan de boorkop te plegen. Een aantrekkelijk vooruitzicht want normaal moeten duikers de boortanden inspecteren onder moeilijke omstandigheden. Slingerland: ‘De schacht was eerst tot vlak onder de rand gevuld met water om voldoende gewicht te zetten tegenover de opwaartse kracht uit de omringende grond. Voor de inspectie moet de schacht echter droog gepompt worden en tegelijkertijd neemt het gewicht van de betonnen prop af door het graven van de TBM. Op het meest kritische punt was er slechts een verschil van 2 % tussen de opwaartse en neerwaartse krachten. Een ander risico was dat er door het verschil in stijfheden tijdens de passage van de TBM vervormingen en lekkages zouden kunnen ontstaan.’

Het oorspronkelijke plan van het consortium was te riskant, vond zowel de aannemer als de Projectorganisatie. ‘We hebben toen besloten om eerst de constructieve wanden en de muren van de trappenhuizen en ventilatieschachten verder af te bouwen voordat de TBM bij de schacht zou arriveren.’

 

 

(KADER 2 + foto segmenten + nog een klein tekeningetje van Eric)

 

TBM BLIJFT MET LASER IN POSITIE

 

Hoe vindt een tunnelboormachine zijn juiste route onder de grond? Buiten de tunnel is met GPS nauwkeurig de coördinaten van de startschacht te bepalen. Binnen de tunnel wordt met behulp van een laseropstelling die om de paar 100 m aan het plafond van de tunnel bevestigd is de exacte positie van de tunnel bepaald. Deze ontvangers registreren ook in welke mate de tunnel beweegt.

De TBM beweegt zich voort door zich met behulp van in totaal 38 vijzels af te zetten tegen de randen van de reeds gemaakte tunnelwand. Door de druk van de vijzels op de al geplaatste tunnelring te variëren – bijvoorbeeld links iets meer dan rechts – kan de boorkop ook in horizontale of verticale richting worden gestuurd. Bij het plaatsen van een tunnelwandsegment worden alleen die vijzels ingetrokken die zich ter plaatse van dat segment bevinden. De overige vijzels houden de druk op de voorgaande ring.

Om bochten te kunnen maken is een tunnelring overigens niet recht. De breedste kant van de ring is 2,02 m breed, de smalste kant 1,98 m. Door bijvoorbeeld de breedste kant helemaal boven in de tunnel te houden gaat de tunnel recht naar beneden. Alle tien segmenten zijn dus enigszins taps. Het is echter niet zo dat gestuurd kan worden met de segmenten. De tunnel volgt altijd de boorkop. De oriëntatie van een tunnelring ligt vast met de positie van het eerste segment. De overige negen segmenten worden om en om aan weerszijden van dit eerste segment geplaatst.

 

(foto segmenten)

 

De tunnelwandsegmenten in een loods; tien segmenten vormen een tunnelring.

 

 

 

(DERDE KADER met TABEL OVERZICHT BOORTUNNELS, ZIE EXCEL-BESTAND)

 

Boortunnels in Nederland

 

In Nederland is pas in 1997 een begin gemaakt met het boren van tunnels. De meeste tunnels zijn geboord met de slurryschildmethode, waarbij bentoniet als steunvloeistof dient om de grond voor het boorschild stabiel te houden. Deze boormethode is net als de gronddrukbalansmethode (Earth Pressure Balance) discontinu. Na 1,5 m of meer boren wordt de boormachine stilgezet, waarna een voor een de geprefabriceerde betonnen tunnelsegmenten worden aangebracht tot er een ring is gevormd. Daarna begint het boren weer.

Deze zomer heeft het ministerie van Verkeer en Waterstaat een akkoord bereikt met de gemeente Den Haag over de aanleg van de Hubertustunnel. Deze tunnel zal waarschijnlijk volgens een nieuw Nederlands boortunnelconcept gebouwd worden: de Industriële Tunnelbouw Methode, ofwel ITM. Daarbij vindt het complete bouwproces, inclusief het storten van beton, ondergronds plaats. De verwachting is dat dit de bouwtijd aanzienlijk kan bekorten. Of dit klopt zal uit praktijkproeven moeten blijken.

 

 

Internetbronnen

 

www.hslzuid.nl

www.highspeed.nl

Officiële sites van de Projectorganisatie HSL-Zuid. Op de eerste staan veel nieuwsberichten en voortgangsrapportages. De tweede is meer gericht op middelbare scholieren die een werkstuk moeten schrijven.

 

www.bouygues-construction.com

Site van de bouwtak van Bouygues.

 

www.concrete.citg.tudelft.nl/

Site van de vakgroep beton binnen de faculteit Civiele Techniek. Hebben in hun laboratorium drie ringen van de Botlektunnel staan die met vijzels van buitenaf onder druk kunnen worden gezet. Deze opstelling heeft ook internationaal de aandacht getrokken.

 

www.cob.nl

De verzamelplaats in Nederland op het gebied van ondergronds bouwen. Er staan uitgebreide beschrijvingen van de werking van tunnelboormachines op.

 

www.tunnelbuilder.com

Geeft een overzicht van lopende tunnelprojecten in de wereld.

 

www.herrenknecht.com

Site van een van de belangrijkste bouwers van tunnelboormachines.

 

 

(QUOTES)

 

 

‘Wij hebben voor de metro in Sydney ook één tunnelbuis met scheidingswand geboord’

 

Het gebruik van open bouwputten in stedelijke gebieden is niet meer te accepteren

 

Aannemers beschouwen de samenstelling van hun bentonietmengsel als het geheim van de smid

 

Uniek is de diameter van tunnelboormachine: 14,9 m

 

De Franse school gebruikt vlakke profielen

 

Er is een soort wet die zegt dat de diameter van de tunnel gedeeld door 21 de dikte van de segmenten oplevert