Tagarchief: auto

De volmaakte auto is een koelkast. Hij verdwijnt uit ons tijdsbeeld door zijn technische voltooiing. (column Nederlands Medianieuws)

Illustratie-SAAB-Viggen Saab_prototype-4 SAAB92-drawing1947-1000340 SAAB900-1000317De volmaakte auto is een koelkast

Column in Nederlands Medianieuws

 

Er is een gezegde dat luidt: ‘old soldiers never die, they just fade away’. En dat gaat ook op voor de automobiel. Die heeft zijn langste tijd gehad als dominant cultuurverschijnsel omdat hij zijn ultieme vervolmaking nadert.

Dat zit zo: Alle automerken zijn pakweg de laatste kwarteeuw technologisch geconvergeerd naar een en hetzelfde designoptimum. De windtunnel, de veiligheidskooi en kreukelzone, milieueisen ,dicteren het ontwerp. Het aantal verkeersdoden is gedaald van enkele duizenden per jaar in de jaren zeventig, toen het piekte, naar zo’n zeshonderd het afgelopen jaar. Nog altijd veel maar gegeven de toename van het aantal autokilometers is de daling werkelijk spectaculair en als je verdisconteert dat de meeste doden vallen onder drugs gebruikende mannelijke twintigers tijdens nachtelijke uren in het weekeinde op tachtig kilometerwegen, dan weet je welke tijden en plaatsen je moet mijden.

Als er al iets dodelijk is aan autorijden dan is het de saaiheid. Je kachelt braaf mee in de trajectcontrole want anders ligt er weer zo’n acceptgiro op de deurmat.

De auto heeft dus een gigantisch imagoprobleem. De auto zoals wij hem hebben leren kennen als de Opel Kadett en de Volkswagen Kever – en alles wat daarna kwam – was een icoon van de emancipatie van de middenklasse. Blij dat ik rij. Meer dan elk ander begerenswaardig consumptieartikel (de huishoudelijke elektronica, de inbouwkeuken, de geheel verzorgde vliegvakantie) is de auto lang het symbool geweest van individuele vrijheid en van levensstijl: Het merk zei iets over iemands persoonlijkheid. Duitsers waren degelijk, Zweden betrouwbaar, Fransen hadden flair, Britten waren voor ‘good sports’ (dat moest je ook wel zijn wilde je na 1980 nog een Britse auto kopen) en Italianen waren voor modieuze macho’s.

De klad kwam er in met de Japanners, volgens mij een volk dat als het om auto’s gaat elke vorm van romantiek ontbeert. Maar ze waren goedkoper en ze gingen ook nog significant minder vaak stuk. De Europese auto is qua technisch ontwerp gejapaniseerd terwijl de aziatische auto’s qua (uiterlijk) design Europees geworden zijn: de meeste ontwerpstudio’s zijn Italiaans maar hun creatieve bewegingsruimte is minimaal.

Italië is het laatste land waar engineering en design in de auto naadloos samenvloeien: Ferrari, Lamborghini en Maserati. Net als maatpakken en exclusieve lederwaren maken ze het liefst maatauto’s vandaar dat het met de ‘grote’ Italiaanse merken zo slecht gaat. De Alfa Romeo is de meest ‘individualistische’ middenklasser maar loopt op zijn laatste benen en die komen onder meer van Opel zoals de bodemplaat van de Corsa.

De Volkswagen is technisch beter maar het uiterlijk ervan is net zo inspirerend als dat van uw koelkast. En dat is de kant die het met de zich vervolmakende auto onherroepelijk op gaat: het worden rijdende koelkasten. Want interesseert het u welk merk koelkast u heeft? Mij niet in elk geval. Als ik er maar wel eentje heb.

De auto lijdt aan dystopie, het tegenovergestelde van utopie: hij is zo goed geworden dat we eigenlijk alleen nog de nadelen er van zien. Een daarvan is dat de hap die hij uit het gezinsbudget neemt sinds de Kadett en de Kever niet is gedaald zoals wel het geval is bij voedsel, kleding, woninginrichting en consumentenelektronica. De nieuwe Mini is twee keer zo zwaar (1.200 i.p.v. 600 kg) en anderhalf keer zo groot als het oorspronkelijke model dankzij allerlei spullen die het leven moeten veraangenamen zoals airco. Inderdaad een koelkast met wielen er onder. Een Duitse tank met een hilarische naam. Een van de zegeningen van de crisis is dat er opeens ook auto’s onder de tienduizend en onder de vijfduizend euro gebouwd kunnen worden. Maar het is te weinig, te laat.

En dat komt door de informatisering van de auto. Die maakt twee cruciale dingen mogelijk. Hij gaat zichzelf besturen. Dat wordt de norm om ze toe te laten op de openbare weg. Ik schat dat nog tien, hooguit vijftien jaar vergt.

Hiermee verdwijnt het laatste restje ‘vliegeniersgevoel’ van het autorijden, namelijk dat het een bijzondere vaardigheid vergt om een machine te besturen die je vrijheid verschaft. Als dat weg is, is er geen enkele reden meer om een auto te bezitten. Hij is gereduceerd tot beschikbaarheid van vervoer en dat kan veel efficiënter en goedkoper via deelsystemen.

De tijd werkt mee. Het in eigendom hebben van een auto is van oudsher het meest opportuun voor een suburbaan wonend gezin met opgroeiende kinderen waarvan de kostwinner(s) op en neer reizen naar het werk. Maar daar komen er steeds minder van. Hoogopgeleide stadsbewoners die aan kinderen beginnen kopen geen auto maar een elektrisch bekrachtigde bakfiets. Er is geen dure parkeervergunning nodig en je bent voor een paar duizend euro klaar. De neiging om de stad, Randstad, te verlaten op zoek naar ruimte wordt minder omdat zij deel uitmaken van de netwerkeconomie. Aan de periferie is niet alleen de bevolkingskrimp op gang gekomen, de hele economie begint zich terug te trekken in de binnenstad. Werk in vooral de creatieve economie is dankzij wifi en tablets steeds minder een in ruimte en tijd van het privéleven gescheiden activiteit en zeker bij zzp’ers een verantwoordelijkheid ‘to get things done’ en vooral deze laatste categorie zit al helemaal niet te wachten op een financiële molensteen zoals een eigen auto.

Er komt een generatie senioren aan met middelloon pensioen in plaats van eindloonpensioen. In hun bestedingsruimte spelen slimmere vervoersoplossingen een belangrijkere rol. Onder hen een toenemend aantal singles. Om hun sociale netwerk te onderhouden willen zij in de binnenstad wonen. Dit zal het privé-autobezit alleen maar verder terugdringen. De opbloei van de netwerkeconomie in binnensteden vraagt op steeds meer openbare ruimte, al of niet voorzien van flexplekken. Die ruimteclaim is al bezig de auto de binnenstad uit te drukken. In Londen, New York, Amsterdam.

In het licht van deze ontwikkeling is het adverteren voor auto’s hopeloos gedateerd. Er stapt een jongetje verkleed als astronaut achter in, en dan begint met papa en mama de ruimtereis. Beter is de valse illusie van autorijden niet te illustreren. Een happy family die over een verlaten kustweg langs een azuurblauwe zee zoeft. De auto die ons leven volmaakt gelukkig maakt is een uitgewerkt mantra en bij Volkswagen weten ze dat al lang. Deze constante in alle autoreclames is de creatieve armoede die zich alleen laat rechtvaardigen door het feit dat de auto-industrie zijn oude verdienmodel (kom nu naar de showroom!) nog wat uitvent voor zolang het duurt.

Dat rode autootje waar ik via mijn NS-businesskaart met een boekingscode in kan, en dat om de hoek staat, is geen Volkswagen Polo maar een Greenwheels. Dat is het merk.

De leukste autoreclame van dit moment is van brillenwinkel Specsavers: Een oudere heer (John Cleese) wil wegrijden maar hij krijgt ruzie met de boordcomputer en stapt getergd uit om de auto een pak slaag te geven met een twijg, totdat hij in de gaten krijgt dat hij een politieauto staat te meppen. Hij rent hij weg zoals alleen Basil Fawlty dat kan.

De bestuurde auto is op weg naar het culturele reservaat van het technisch erfgoed om zich te voegen bij de stoomtrein en het zeilschip. Leuk voor op zon- en feestdagen op een circuit waar een blind paard geen kwaad kan doen.

‘Opa, reed jij vroeger auto?’ ‘Ja, jongen, een Saab, dat staat voor Svenska Aeroplan Aktie Bolaget en die bouwden vliegtuigen.’ Wauw, dat wil de kleine jongen wel eens zien. Op naar het museum!

 

Schone auto is nog ver weg

 

Wie een verbrandingsmotor wil met zowel een lage CO2-emissie als een lage NOX-emissie, zoekt naar een vierkante cirkel. Voor alle verbrandingsmotoren geldt in principe: hoe lager de CO2-uitstoot des te hoger de NOX-uitstoot. Of het nu vliegtuig-, auto- of scheepsmotoren zijn of stationaire gasturbines in elektriciteitscentrales. Hoe minder broeikasgas, des te meer fotochemische smog. U mag kiezen. In Californië vinden ze NOX een issue, omdat de zon er veel schijnt waardoor er ozon – fotochemische smog – uit ontstaat dat samenhangt met astma en COPD. In Europa is vooral CO2 een probleem. De duurzame auto is een keizer zonder kleren.

Waarom wordt dit publieke geheim nu pas een politiek schandaal? TNO stelde in 2013: ‘Het is zorgelijk dat het verschil tussen praktijk- en testwaarden de laatste jaren fors groter is geworden. () Fabrikanten passen energiebesparende technieken toe die op de typekeuringstest meer voordeel opleveren dan in de praktijk.’ (Het hier geciteerde TNO-rapport is in 2013 met begeleidende brief van staatssecretaris Mansveld aan de Tweede Kamer gestuurd).

Dieselgate gaat dus verder dan Volkswagen. Het strekt zich uit tot de hele auto-industrie en de controlerende overheidsinstanties. De milieukeuring door het Environmental Protection Agency was een grotendeels papieren excercitie. En de volgende ronkende tekst komt uit het Algemeen Dagblad: ‘Liefst 25 van haar ingenieurs zette Mary Nichols, baas van de California Air Resources Board (CARB), afgelopen jaar op het mysterie: waarom stoten diesels van Volkswagen op de weg véél méér uitlaatgassen uit dan op de testbaan? Na maanden speurwerk kwam de aap uit de mouw. Met gemanipuleerde software wist de Duitse automaker de schadelijke uitstoot tijdens labtesten te verlagen.’

Het suggereert een complot van enorme omvang. Maar iedereen die wel eens een monteur spreekt of even zijn licht opsteekt in de halfduistere wereld van het car-tunen kan weten hoe de vork in de steel zit. Daar bekwamen fans van Topgear zich in het hacken van autosoftware bij het tweaken van motoren.

De tests bootsen de praktijk redelijk goed na dus kon de oorzaak van de discrepantie met de praktijk alleen maar in de motormanagementsoftware zitten. Dat die vrij voor de hand liggende deductieoefening niet eerder werd gedaan is omdat de auto zorgt voor collectief zelfbedrog als het aankomt op goed milieugedrag. We willen duurzaam leven maar wel zonder minder te consumeren. In Standort Deutschland geldt geen maximumsnelheid en de nieuwe baas van Volkswagen komt van Porsche.

Dus rust auto’s standaard uit met een zogenoemde PEMS (Portable Emission Measurement System). Het is grote maar niet onoverkomelijke technische uitdaging PEMS te krimpen tot een soort ‘elektronische enkelband’ om de uitlaat die realtime emissies meet en analyseert. De miniaturisering van gasanalyseapparaten gaat de laatste jaren best hard richting ‘lab-on-a-chip’. Tenslotte is de auto al een speerpunt in het oprukkende internet der dingen.

Maar autorijden is wordt daarmee niet ‘schoon’. De hoge uitstoot van stikstofoxiden, is een bijproduct van steeds hogere inlaatdruk en hogere verbrandingstemperatuur. Daardoor kan je met dezelfde hoeveelheid brandstof meer kilometers maken. Wat verfijnder is het onderzoek naar de processen in cilinders en verbrandingskamers maar dat levert maar mondjesmaat nieuwe inzichten op. Het emissieprobleem is daarom uiteindelijk maar opgelost met een gemakkelijk te omzeilen houtje-touwtje techniek: het toevoegen van een ureumoplossing in de uitlaatgassen die de NOX afbreekt in elementair stikstof (N2, 78% van onze atmosferische lucht) en water.

Ook elektrisch rijden is overigens allerminst ‘duurzaam’. De uitstoot van de auto wordt deels verplaatst van het rijden er mee, naar de productie er van. En het rijden gebeurt op grotendeels ‘vuile’ stroom. Een carrosserie maken van carbon fibre reinforced plastic (CFRP) – nodig om het batterijgewicht te compenseren – kost per kilo ongeveer vijf keer zoveel energie als een stalen carrosserie. En staal is eenvoudig volledig te hergebruiken. Autoschroot is een welkom koelmiddel in het ruwijzerproces. Kunststof is slechts met veel moeite zeer gedeeltelijk en tegen hoge energiekosten te hergebruiken.

De winning van de benodigde zeldzame aardmetalen voor onder meer permanente magneten en batterijen is nog steeds zeer vervuilend, giftig, en vreet energie en ruimte. Daarom komen de meeste zeldzame aardmetalen uit China: dat heeft een groot platteland met een onmondige bevolking en er gelden lakse milieuregels. De volgende ‘scam’ dient zich hier al aan. Elektrisch rijden betekent het ene milieuprobleem verruilen voor het andere.

De auto is nochtans een prachtige uitvinding en auto’s zijn gestaag minder vervuilend en veiliger geworden. Maar duurzaam is autorijden nog lang niet en de vraag is of het dat ooit zal worden. De grote milieuwinst is ook niet te verwachten van een bepaalde aandrijf- of fabricagetechnologie maar van vermindering van het aantal auto’s door autodeelsystemen. Daar zit veel meer toekomst in omdat dit iets doet aan die andere schaduwzijde van auto’s: het enorme ruimtebeslag in onze woonomgeving, vooral onze binnensteden, en de slechte gebruiksefficiëntie: een personenauto wordt gemiddeld minder dan een uur per dag gebruikt. Maar minder auto’s, daar zullen ze bij Volkswagen niet echt blij van worden.

(Dit artikel verscheen op 9 oktober 2015 in Het Financieele Dagblad)270776820-Van-den-Brink-pdf (2) 284165570-Dieselgate-FD-20151009 (2)

De Metamorfose van Nederland (2011) Geschiedenis van een totaal en extreem ingenieursproject

20_31_ING18_19_Metamorfose

GraanelevatorRotterdam_img062
Graanelevatoren aan het werk in de Maashaven te Rotterdam, in 1912 geschilderd door Bernardus Bueninck. De komst van goedkoop Amerikaans graan in combinatie met broodfabrieken deed de levensverwachting van de Nederlander na 1850 snel stijgen.

tekst erwin van den brink, prof.dr.ir. harry lintsen, prof.dr. maarten van rossem

Eeuwenlang leefde de gemiddelde Nederlander te midden van het vuil en had hij amper te eten. En als hij pech had, raakte hij zijn huis kwijt bij een overstroming. Maar vanaf 1800 hebben ingenieurs het land volledig op de schop genomen. Het zompige veen is veranderd in een Gouden Delta, waar het goed toeven is. Verslag van een spectaculaire verandering.

De televisiezender Discovery Channel wijdde enige jaren geleden in de serie Extreme Engineering een hele aflevering aan Nederland. Niet aan de Oosterscheldedam of de Zuiderzeewerken, maar aan Nederland als een totaal en extreem ingenieursproject. En daar zit wat in. Wie, zelfs in een hoogontwikkeld land als de Verenigde Staten, met de trein naar een stad als New York reist, passeert eerst eindeloze grauwe voorsteden afgewisseld met vaak vervallen industrie- en bedrijfsterreinen. In een stad als Detroit raken hele wijken ontvolkt en niemand die er nog naar omkijkt. Ruimte is er niet schaars.

En dat is in ons land wel het geval. Wie per vliegtuig vanuit het buitenland in Nederland arriveert en het geluk heeft bij helder weer op Schiphol te landen, krijgt eerst een rondvlucht over het meest strakgetrokken, aangeharkte, stadspark ter wereld. Hier wordt alles beheerd en is alles beheersbaar. Eerst naderen we vanuit het zuidwesten de Zeeuwse delta met imposante dammen en dijken, dan kruisen we een gigantische in zee opgespoten zandvlakte bij Rotterdam, de Maasvlakte, waar olietankers en containerschepen afmeren. Even verderop staan de pijpen en installaties van ‘Pernis’ de grootste olieraffinaderij van Europa en een van de grootste ter wereld. Vervolgens dalen we boven Den Haag en Scheveningen.

Rotterdam_img058
Bij uitgeverij Wolters-Noordhoff (tegenwoordig Noordhoff Uitgevers) verschenen vanaf eind negentiende eeuw tot halverwege de twintigste eeuw de bekende schoolwandplaten, die de wording van het moderne Nederland laten zien. Hier: Scheepswerf aan de Nieuwe Maas bij Rotterdam, in 1926 geschilderd door Johan Dijkstra in opdracht van de toen nog aparte uitgeverij J.B. Wolters uit Groningen. De schoolplaat is deel van de serie ‘Nederland in woord en beeld’.

Even later passeren we de hoogovens bij IJmuiden en het Noordzeekanaal. Het vliegtuig begint nu langzaam een bocht van 180 graden te maken: over de middeleeuwse veenverkaveling rond Assendelft met zijn ellenlange smalle percelen, gescheiden door sloten die glinsteren in de namiddagzon. Zover het oog reikt zien we een in kaarsrechte stukken gesneden biljartlaken waar plassen als kwikzilver bovenop lijken te liggen: Waterland en de Zaanstreek. Het is een geometrische compositie van rechtlijnige percelen, een Mondriaan in groenschakeringen die wordt doorkruist door spoorlijnen, snelwegen en hoogspanningslijnen: een twintigste-eeuwse infrastructuur ge-superponeerd op het Nederland van voor 1800. In de verte een glimp van de zeventiende-eeuwse droogmakerijen Wormer, Purmer en Schermer die tot het Werelderfgoed behoren.

Het vliegtuig daalt nu snel. We wijzen onze buitenlandse medepassagier op de Ringvaart van de Haarlemmermeer en leggen uit dat het vliegveld waarop wij landen 6 m onder de zeespiegel ligt, op de bodem van een meer dat in de negentiende eeuw is drooggepompt. Hij staart ons niet-begrijpend aan. Dit is Nederland: extreme engineering.

Maar zo is Nederland niet altijd geweest. Toen dit tijdschrift in 1886 voor het eerst verscheen, was de modernisering van Nederland volop aan de gang. Ons glas was al half vol. Binnen drie jaar zou het vijftigjarig jubileum van de spoorwegen worden gevierd. Houten zeilschepen (schoeners, barken en klippers of tall ships, zoals we ze nu noemen) waren al grotendeels vervangen door stalen stoomschepen. De eerste auto reed in 1886, de telefoon bestond al, zij het voor een kleine elite. Nederland raakte vol rokende schoorstenen van fabrieken die bijvoorbeeld de Twentse stoomspinnerijen en –weverijen huisvestten. Philips bestond nog niet, maar de gloeilamp al wel. De hoogovens bij IJmuiden waren er evenmin, maar het Noordzeekanaal was al gegraven. Het was in 1878 gereedgekomen mede dankzij Engelse stoomgraafmachines. Er werden wel kolen gewonnen in Zuid-Limburg, maar de Staats Mijnen die Nederland decennialang van energie zouden voorzien, waren er nog niet.

Rond 1886, en zeker rond de eeuwwisseling, ontstond het Nederland dat de ouderen nog kennen van de nostalgische schoolwandplaten van uitgeverij Wolters-Noordhoff, allemaal gemaakt tussen 1886 en 1954. Zij laten de genormaliseerde rivieren zien met hun zomer- en winterdijken en de baksteenfabrieken op de uiterwaarden, de kribben en de pontveren en ook de kanalen met hun sluizencomplexen. In de verte een spoorbrug en op het water stoomsleepvaart. Behalve het grote aantal riviergezichten valt in deze collectie ook het grote aantal platen op dat de vervening, de veenkoloniën en het turfsteken en de ontginning van de woeste zandgronden tot onderwerp heeft.

Rembrandtplein_img044
Het Amsterdamse Rembrandtplein in 1911, door Bernardus Bueninck.

Het aantal stadsgezichten in de collectie schoolwandplaten is beperkt. De steden groeiden enorm sinds 1850 en dat leidde tot allerlei problemen op het vlak van volksgezondheid. Wat dat betreft gaven schilderijen zoals die van Breitner een realistisch beeld van steden als Amsterdam.

In 1864 verhuisde Jacob van Niftrik van Nijmegen naar Amsterdam om er te werken als ingenieur bij de gemeentelijke dienst Publieke Werken. Het viel hem op hoe smerig de stad was. Amsterdam was in meest letterlijke zin een open riool en vuilnisbelt. Tijdens een inspectie benam de walm afkomstig uit ‘Het Hol’, een steeg tussen de Nieuwe Zijds Voorburgwal en de Kalverstraat, hem letterlijk het bewustzijn. De kersverse stadsingenieur ging van de graat door de adembenemende zurige stank van bederf die uit de woningen naar buiten dreef en moest door collega’s op de brede gracht erachter weer bij bewustzijn worden gebracht.

Spoelrioolstelsel

Al in 1797 publiceerde een door het Amsterdamse stadsbestuur benoemde commissie een dik rapport over de onhygiënische situatie. Uitwerpselen werden van oudsher opgevangen in tonnen en beerputten die regelmatig moesten worden geleegd, waarna de feces per wagen of per schip de stad werden uitgebracht. Vanaf 1850 kwamen de onvolkomenheden van dit systeem steeds meer aan het licht naarmate de steden groeiden. Vanaf 1832 deden zich periodiek uitbraken van cholera voor doordat uitwerpselen in de bodem uitspoelden en met grondwater in contact kwamen dat als drinkwater werd opgepompt.

De beroemde Amsterdamse huisarts Samuel Sarphati probeerde met zijn Maatschappij ter bevordering van Landbouw en Landontginning in Nederland de straten beter te reinigen door verzamelde mest aan boeren in de omgeving te verkopen. Verschillende steden trachtten een gemeentelijk tonnenstelsel op te zetten. In Amsterdam, en ook in Leiden en Dordrecht, functioneerde een liernurstelsel, uitgevonden door de Haarlemse genieofficier Charles Liernur. Dat bestond uit ijzeren vacuümbuizen die de stront met onderdruk van het huistoilet naar een verzamelpunt zogen, van daaruit werd het met bootjes naar boeren en tuinders vervoerd. Op een gegeven moment werd de poep van 120 000 Amsterdammers ‘afgezogen’, maar belandde wegens gebrek aan afzet alsnog in de wateren direct buiten de stad, totdat in 1889 een ammoniakfabriek werd geopend die de uitwerpselen een winstgevende bestemming gaf.

IJmuidenHoogovens_img162
De hoogovens in Velsen, door Riekele Prins, 1951

De bekende schrijver Jacob van Lennep was een drijvende kracht achter het eerste drinkwaternet in Amsterdam. Het drinkwater werd met een stoommachine uit de duinen bij Bloemendaal en Vogelenzang opgepompt en onder natuurlijk verval naar Amsterdam getransporteerd – dit gebied heet tegenwoordig Amsterdamse Waterleiding Duinen. Vanaf het moment dat grote hoeveelheden drinkwater beschikbaar waren, kwam het spoeltoilet in zwang en daarmee ook het spoelriool. In de periode van 1890 tot 1940 werd heel Nederland van een spoelrioolstelsel voorzien. De gemeente Utrecht begon in 1939 met de bouw van een afvalwaterzuiveringsinstallatie (awzi). Tegenwoordig wordt al het riool- en afvalwater gezuiverd: alle Nederlanders betalen een reinigingsheffing.

Behalve slechte hygiëne, maakten slechte huisvesting en slechte voeding het leven van de meeste Nederlanders in de steden tot ver in de negentiende eeuw ‘kort, ongewis en ellendig’. In feite was dat eeuwenlang een soort ‘natuurconstante’ geweest, zelfs in de Gouden Eeuw. Een lang, doorvoed en behaaglijk leven was slechts weggelegd voor een kleine bovenlaag van handelslieden, patriciërs, bestuurders en ambachtslieden. Maar ook voor hen gold dat er geen epidemie moest uitbreken. Het ongeschoolde werkvolk leefde eigenlijk voortdurend op de rand van het bestaan, onder omstandigheden zoals die nu nog zijn aan te treffen in een land als Bangladesh, in de slums van de hoofdstad Dhaka. In fysisch geografisch opzicht lijkt Bangladesh op het Nederland van 1800: een dichtbevolkte delta, een archipel van talloze kleine veenachtige eilandjes die om de haverklap overstromen.

De gemiddelde levensverwachting schommelde tussen de 35 en 40 jaar. Een Amsterdammer had rond 1800 zelfs een levensverwachting van slechts 26 jaar, wat vooral kwam door de hoge kindersterfte. Wie de eerste vijf jaar van zijn leven had doorstaan, had kans een jaar of 50, 60 te worden. Na 1870 begon de levensverwachting snel en onomkeerbaar te stijgen. Daarvoor deden zich sterke schommelingen voor in de gemiddelde levensverwachting, zoals nog tussen 1868 en 1871. Toen daalde de levensverwachting van 40 naar 33 jaar: een indicatie dat er maar even iets hoefde mis te gaan en mensen massaal door het bestaansminimum zakten.

IJsselbijKampen_img041
Nijmegen aan de Waal. (B. Bueninck, 1916)

Een Nederlander wordt tegenwoordig gemiddeld 78 jaar. Binnen enkele generaties is het gelukt bijna twee keer zo oud te worden als vroeger. Deze ontwikkeling in Europa en Noord-Amerika is uniek in de geschiedenis van de mensheid. Hoe kwam dat? Vermoedelijk hebben technische ingrepen, zoals het droogleggen van de Haarlemmermeer en andere meren en moerassen, na 1850 geholpen malaria in te dammen. Maar verondersteld wordt dat dit effect beperkt was. Dankzij vaccinatie dan? Antibiotica werden pas vanaf de jaren 1940 op grote schaal gebruikt. Grofweg wordt de bijdrage van de geneeskunde aan de stijging van de gemiddelde leeftijd over de gehele wereld geschat op 15 %.

Een ruwe schatting leert dat ongeveer 10 % van de sterftedaling in de periode tussen 1870 en 1900 kan worden toegeschreven aan betere hygiëne. Vooral de levenskansen van zuigelingen hangen af van hygiënische leefomstandigheden.

Uiteindelijk werden Nederlanders vooral gezonder en ouder door de verbeterde voedselvoorziening. Dat was het resultaat van een complex aan innovaties. Het Amerikaanse middenwesten raakte ontgonnen en ontsloten. De opbrengst van de enorme Amerikaanse graanvelden bereikte dankzij de moderne stoomscheepvaart ook Europa. Daar was inmiddels een machinale broodproductie mogelijk.

In 1857 ging dankzij de inspanning van Samuel Sarphati in Amsterdam de eerste meel- broodfabriek in bedrijf. Daarvoor moest eerst een bijna middeleeuws kartel van ambachtelijke molenaars worden gebroken, die werden beschermd door de Wet op het Gemaal. Die wet was zo lang blijven bestaan omdat de belasting op gemalen meel een belangrijke inkomstenbron van de overheid was en omdat de overheid zwaar in de schuld zat sinds koning Willem I. Dankzij de politieke inspanningen van Sarphati werd brood in Amsterdam opeens 30 % minder duur.

Een belangrijke verbetering was ook de verwetenschappelijking van de landbouw. Die begon in Nederland in 1876 toen het rijk de gemeentelijke landbouwschool in Wageningen overnam. Vanaf 1918 werden aan deze Landbouwhogeschool landbouwingenieurs opgeleid. Maar al vanaf 1850 herstelde de aardappelteelt zich door moderne inzichten in rasveredeling, keuze van grondsoorten en variatie in teeltperioden.

Moeizame verbindingen

Deze resultaten waren niet bereikt als in de eerste helft van de negentiende eeuw niet het nodige voorwerk was gedaan. De fysische geografie van Nederland was verbeterd, waardoor de bestaansveiligheid en de bereikbaarheid vooruitgingen.

Staatsmijnen_img068
De mijn Maurits bij Sittard, 1931, door Johan Gabrielse.

Reizen door Nederland was destijds als reizen door de Derde Wereld nu. In de winter van 1808-1809 bijvoorbeeld verwoestte kruiend ijs, na het invallen van de dooi op 10 januari, op tal van plaatsen de rivierdijken waardoor het land tussen Maas en Waal maandenlang veranderde in een groot woelig binnenmeer. Schoolmeester Pieter Boekel was op 29 november 1836 getuige van een storm op het Haarlemmermeer waardoor 4000 hectare land overstroomde. Nederland telde honderden van zulke meren en plassen (zoals de nog bestaande Vinkeveense en de Nieuwkoopse plassen). Zij waren ontstaan door de turfwinning: Nederland had zichzelf sinds de Gouden Eeuw letterlijk grotendeels opgestookt. In augustus 1837 stelde Koning Willem I een commissie in om het droogmalen van het Haarlemmermeer voor te bereiden.

Ook ingenieur Jacob van Niftrik werd geconfronteerd met de moeilijke begaanbaarheid van het land. Voordat hij in 1864 bij Publieke Werken in Amsterdam ging werken, was hij in dienst van de waterstaat op Zuid-Beveland. Op 10 januari 1857 bereikte hem daar het bericht dat zijn moeder in Nijmegen was overleden. Hij hoorde het nieuws nog dezelfde dag dankzij het Rijks Telegraafnet, dat pas enkele jaren bestond. Goes en Nijmegen behoorden tot de ongeveer zestig plaatsen met een telegraafkantoor. Een ijlbode bracht Van Niftrik vanuit Goes het telegram. De ingenieur pakte snel een valies en reisde met de veerboot naar Terneuzen in Zeeuws-Vlaanderen.

Sinds 1828 onderhield een raderstoomboot een dienst over de Westerschelde, ook in de winter. Van Terneuzen ging het met de postkoets naar Sint-Niklaas. Van daaruit vertrok namelijk een trein: België was al heel wat verder dan Nederland met de aanleg van spoorlijnen. Een Belgische maatschappij onderhield een dienst via Roosendaal naar Moerdijk. Uit deze plaats wilde Van Niftrik met de stoomboot naar Rotterdam: helaas verhinderde ijsgang op het Hollands Diep dit. Hij bemachtigde voor veel geld een plekje op een roeiboot en moest mee roeien. Op een toevallig passerende open boerenwagen ging het daarna via het eiland van Dordrecht en het eiland van IJsselmonde naar Rotterdam, waar hij nog net op tijd was voor de laatste dagtrein naar Arnhem. Deze spoorverbinding via Gouda en Utrecht bestond pas twee jaar.

In de treincoupé kon Van Niftrik op krachten komen voor de laatste etappe: de voetreis van Arnhem naar Nijmegen. Hij hoefde daarna slechts drie uur te lopen in het pikkedonker en de Waal over te steken die vol lag met kruiend ijs. Een onbeheerde roeiboot bood uitkomst, want ook hier was het veer uit de vaart. Twee dagen na zijn vertrek bereikte Van Niftrik om vier uur in de ochtend zijn ouderlijk huis.

VliegveldSchiphol_img049
Het vliegveld Schiphol, 1952, door Riekele Prins.

Sinds de zeventiende eeuw had Holland, het kernterritorium van de Republiek, een systeem van openbaar vervoer: de trekschuit die ook voor de lagere klasse betaalbaar was. Trekvaarten, zoals die tussen Amsterdam en Haarlem, Haarlem en Leiden, vormden de hoofdaders van de infrastructuur. Holland bestond eeuwenlang uit een smalle zanderige kuststrook met daarachter een laag gebied van kleiafzettingen en verveningen onderbroken door allerlei waterpartijen die al het verkeer accommodeerden. Bij Amsterdam ging de Zuiderzee over in het IJ dat zich westwaarts uitstrekte tot het huidige IJmuiden: daar heette het Wijkermeer vanwege de nabijheid van Beverwijk. Holland was meer water dan land.

Op de hoge gronden, ten oosten van pakweg Utrecht, waren niet of nauwelijks waterwegen en bestonden de gewone wegen meestal uit half verharde karrensporen. Voordat de straatweg van Amsterdam naar Utrecht werd aangelegd, was het jaagpad langs de Vecht de rijweg tussen beide steden. In 1830 waren alle verharde wegen bij elkaar ongeveer 2500 km lang. Tegenwoordig ligt er circa 60 000 km weg buiten de bebouwde kom. Verhard wilde in 1830 doorgaans zeggen: aangestampt met puin of steenslag, vaak afkomstig van de sloop van stadsmuren en -poorten. Macadamwegen werden verhard met een mengsel van fijn puin, vermengd met vette klei of leem als bindmiddel. De straatwegen of, zoals zij later bekend werden, rijksstraatwegen, hadden een verharding van klinkers, hard gebakken stenen. Of er werden basaltkeien geïmporteerd uit stoomDuitsland. Het waren de ‘snelwegen’ van voor onze tijd. Het was zeer arbeidsintensief om ze aan te leggen en het bestratingsmateriaal was duur.

Veendam_img034
Veendam, 1904, door Bernardus Bueninck.

Voor de economie was het goederenvervoer via de grote rivieren naar het Duitse en Belgische achterland veel belangrijker en die rivieren vormden een groot probleem. Ze waren in de loop van de achttiende eeuw verzand en te ondiep geworden voor de groter wordende schepen. De rivier van 1800 was een wijd stelsel van geulen en zandbanken. De afvoer was een probleem dat zich vooral openbaarde als de rivier ’s winters bevroren was geweest en bij het invallen van de dooi verstopt raakte door kruiend ijs dat bij gebrek aan diepgang enorme ijsbergen opstuwde. Die ijsbergen drukten de dijken kapot, waarna het complete ommeland overstroomd raakte. Aan het begin van de negentiende eeuw stond het rivierengebied in het voorjaar vaak maandenlang blank: watervlaktes van honderden kilometers met hier en daar nog een dijkkruin die boven water uitstak en die diende als vluchtheuvel.

Duitse deskundigen die in 1849 de Waal en de Merwede inspecteerden, concludeerden dat de Nederlandse regering sinds lange tijd niets deed om de toestand van de rivier te verbeteren. In 1851 sloot Nederland met tegenzin een verdrag met Duitsland om de vaar- en handelsroutes tussen het Ruhrgebied en de Noordzee te verbeteren. Er moest een eind komen aan de lange reeks nationale rampen en bijna-rampen.

Baanbrekend voor de rivierenkwestie was het rapport dat ir. J.H. Ferrand en ir. L.J.A. van der Kun in 1850 publiceerden. Zij meenden dat een rivier in een hoofdgeul moest worden gedwongen. Daar waar de rivier een zandbank aan twee kanten omstroomde, werd een dam gebouwd tussen de zandbank en de oever waardoor een dode geul ontstond en een geul met een veel grotere stroomsnelheid die zichzelf uitschuurde. Ook zagen zij in dat zij dit zoveel mogelijk stroomafwaarts moesten doen, bij de monding. Als de uitstroming naar zee werd verbeterd dan nam ook de stroomsnelheid bovenstrooms toe en daarmee de verplaatsing van sediment richting riviermonding.

Ingenieur Pieter Caland van Rijkswaterstaat maakte in opdracht van de regering studiereizen naar Engelse en Franse riviermondingen en ontdekte in 1860 het systeem van de zeearmen. Uit een Waterstaatkaart uit 1759 leidde Caland af dat de afwatering naar zee aan de noordkant van de delta vroeger veel beter was geweest. Het spuivermogen van de Nieuwe Maas was achteruitgegaan door het ontstaan van eilanden in de rivier. Door het graven van een kanaal door Hoek van Holland, de Nieuwe Waterweg, zouden de Nieuwe Maas en de Lek ongehinderd in de Noordzee uitmonden.

Het graven van de Nieuwe Waterweg begon in 1863 en was in 1872 voltooid. Enkele jaren later (1878) kreeg Amsterdam zijn Noordzeekanaal met de doorgraving van de duinen tussen Velsen en Beverwijk waar ‘Holland op zijn smalst’ was. Dat was de ultieme poging van Amsterdam weer de internationale stapelplaats voor goederen te maken. De Nieuwe Waterweg maakte echter van Rotterdam, dat eeuwenlang in de schaduw van Amsterdam had gestaan, de nieuwe wereldhaven omdat de verbinding van daaruit met het Duitse achterland opeens superieur was. Daar deden de aanleg van het Merwedekanaal (1892) en het Amsterdam-Rijnkanaal (1952), pogingen om Amsterdam een concurrerende verbinding te geven met de Rijn, niets aan af. Het Amsterdam-Rijnkanaal is nog altijd het drukst bevaren kanaal van Nederland, een van de drukste in Europa, en de Rijn de drukst bevaren rivier van Europa.

Waarschijnlijk is de negentiende eeuw dus veel bepalender geweest voor het ontstaan van het moderne Nederland dan de twintigste eeuw. Nederland was van 1588 tot 1795 een republiek geweest, waar rivaliserende steden en rivaliserende waterschappen de boventoon voerden. De stedelijke rivaliteit was lang een prikkel tot innovatie geweest. De rivaliteit tussen de waterschappen was aan het einde van de achttiende eeuw rampzalig voor de nationale waterstaat. Sabotageacties over en weer tussen waterschappen waren niet ongewoon.

IndustriestadEnschede_img038
Industriestad Enschede, 1922, door Johan Dijkstra.

De Franse bezetting betekende een belangrijke verbetering. In 1795 viel Frankrijk ons land binnen en riep de Bataafse Republiek uit. De Fransen maakten een begin met de nationale eenheidsstaat en richtten in 1798 Rijkswaterstaat op, gemodelleerd naar de Franse staatsdienst Administration des Ponts et des Chaussees. Rijkswaterstaat is dus ouder dan het Koninkrijk der Nederlanden (1813), dat ontstond na de bevrijding van ons land.

Gouden Delta

De energievoorziening van de Republiek was vooral gebaseerd op hout, water, wind en organische grondstoffen. De technologische innovatie zat op een dood spoor. In de negentiende eeuw profiteerde Nederland ook mee van de grote revolutie in de westerse wereld om de barrières van spierkracht, water- en windkracht te doorbreken en gebruik te maken van fossiele energie: steenkool. Dankzij de stoommachine konden steeds diepere mijnen in rijkere steenkoollagen worden ontgonnen: ze dreven de liften aan, zodat mijnwerkers honderden meters diep konden worden neergelaten, en ze dreven de drilboren aan en de pompen die de mijnen droog hielden. Steenkool was de stuwende kracht achter een enorme metallurgische en machine-industrie, die machines produceerde waarmee nog meer steenkool en later olie en gas konden worden gewonnen.

PolderZuidHolland_img053
Polderlandschap in Zuid-Holland, 1917, door Bernardus Bueninck.

De negentien molens bij Kinderdijk zijn iconen van het pittoreske Nederland. Maar in periodes dat veel regen samenviel met weinig wind stond het land blank, leden de koeien honger en bedierf het gewas en dat was schering en inslag. Het is goed te bedenken dat de molengang in de loop der eeuwen moest worden uitgebreid, omdat de veenpolders die ze bemaalden steeds verder wegzakten (ongeveer een halve meter per eeuw) en windmolens het water niet meer dan ongeveer 1,5 m omhoog kunnen brengen. Bij Kinderdijk werden daarom molens in serie geschakeld om een groter hoogteverschil dan 1,5 m te overbruggen. De Purmer, de Schemer en Wormer liggen ongeveer 4 m onder de zeespiegel. De Haarlemmermeer ligt meer dan 6 m onder NAP. Droogmalen met windmolens (800 miljoen m3 water moest worden weggepompt) was daarom geen optie en dus installeerden Engelse ingenieurs in 1849 de toen grootste stoomzuiger ter wereld in het gemaal Cruquius. Nadat het in 1933 buiten gebruik werd gesteld, heeft het Koninklijk Instituut van Ingenieurs ervoor gezorgd dat het niet werd gesloopt. Tegenwoordig is het gemaal een museum.

Het laatste stoomgemaal in Nederland dat nog in bedrijf is, is het Ir. D.F. Woudagemaal bij Lemmer in Friesland. In tijden van lang aanhoudende regen wordt het nog wel eens wordt opgestookt om bij te springen in het uitslaan van water uit de polder naar de hogere boezem. De meeste gemalen werken tegenwoordig elektrisch. Het grootste gemaal van Europa, dat in het Noordzeekanaal bij IJmuiden, pompt per jaar twee miljard m3 polderwater naar zee. Dat is meer dan twee Haarlemmermeren per jaar. Het heeft een maximumvermogen van 260 m3 per seconde bij een elektrisch vermogen van 1 MW.

Zonder ingrijpen is het huidige Nederland ondenkbaar. Het is een kunstmatig land dat voortdurend in stand wordt gehouden en in die zin niet ‘duurzaam’ is. In 1869-1871 werd het laatste stukje oerbos ontgonnen, het Beekbergerwoud aan de oostflank van het Veluwemassief. In het jaar 1000 lagen de westelijke veenpakketten 4 m boven de zeespiegel. Door bedijking en bemaling is het veen ingeklonken tot meer dan 4 m onder de zeespiegel. Voortschrijdend inzicht laat de schaduwkanten zien van onze beheerszucht. Onze prachtig afstromende, gekanaliseerde rivieren met hun dijken kunnen hun sediment niet meer afzetten in het omringende land, zoals vroeger gebeurde als kruiend ijs in het voorjaar dijkdoorbraken veroorzaakte waardoor slib de polders instroomde. Door dit wegvallen van de jaarlijkse natuurlijke ophoging komen de rivieren steeds hoger te liggen ten opzichte van de inklinkende polders achter de rivierdijk die steeds meer verstedelijkt zijn.

Zo problematisch als onze fysische geografie is, zo kansrijk is onze sociale geografie. Een land aan de monding van de belangrijkste Europese rivier, de ideale uitvalsbasis voor zowel de handel op de Oostzee en Scandinavië, als de handel op Groot Brittannië en via het Kanaal de rest van de wereld. Een ideaal kruispunt van Europese culturen.

Nederland is na Luxemburg het land met het hoogste inkomen per hoofd van de bevolking van de Europese Unie. Terwijl rond 1800 70 à 80 % van de bevolking op het fysieke bestaansminimum leefde, geniet nu vrijwel iedereen mee van verworvenheden van de verzorgingsstaat. Nederlanders zijn gevrijwaard van honger en dakloosheid.

De roem van de Gouden Eeuw, waarin het volk niet meedeelde in de geneugten, is verruild voor het riante leven in de Gouden Delta. Maar deze ongekende spreiding van welvaart leunt op een economie die niet duurzaam is en op de tocht kan komen te staan als de onderklasse in Bangladesh, Azië, Zuid-Amerika en Afrika opklimt naar de middenklasse en hetzelfde beroep gaat doen op voedsel- en energiebronnen. Hoe wij het huidige niveau van bestaansveiligheid achter de dijken handhaven en onze welvaart houdbaar maken, dat is de grote technologische uitdaging van deze eeuw.

Bronnen

Harry Lintsen e.a.: Made in Holland. Een techniekgeschiedenis van Nederland (1800-2000). Walburg Pers, 384 p. ISBN 90 5730 349 3

Auke van der Woud: Een nieuwe wereld. Het ontstaan van het moderne Nederland. Uitgeverij Bert Bakker, 463 p. ISBN 9035129830.

Auke van der Woud: Het Lege land. De ruimtelijke orde van Nederland 1798-1848. Uitgeverij Bert Bakker, 688 p. ISBN 9789035135970

Jan Luiten van Zanden: Een klein land in de 20e eeuw. Economische geschiedenis van Nederland 1914-1995. Het Spectrum, 269 p. 9789027461667

Johan Schot, Harry Lintsen, Arie Rip en Albert de la Bruheze: Techniek in Nederland in de twintigste eeuw. Walburg Pers, zeven delen.

Harry Lintsen: Op zoek naar de oorsprong van de Nederlandse Kenniseconomie. Een Essay geschreven in opdracht van TNO. Stichting Historie der Techniek

Harry Lintsen e.a. : Kwetsbaar Nederland. Het problematische socio-ecosysteem aan de vooravond van de Industriële Revolutie. Concepttekst van hoofdstuk uit te verschijnen boek De tweede transitie: de moeizame weg naar duurzaamheid in Nederland.

Streamers

Dit is Nederland: extreme engineering

Ons land bestond uit een archipel van veenachtige eilandjes die om de haverklap overstroomden

Van Niftrik deed twee dagen over een reis van Zeeland naar Nijmegen

Slechte hygiëne, slechte huisvesting en slechte voeding maakten het leven ‘kort, ongewis en ellendig’

Zo problematisch als onze fysische geografie is, zo kansrijk is onze sociale geografie

De roem van de Gouden Eeuw is verruild voor het riante leven in de Gouden Delta

[bijschriften bij de illustraties]

[Openingsplaat]

[Rotterdam_img058.jpg]

Bij uitgeverij Wolters-Noordhoff (tegenwoordig Noordhoff Uitgevers) verschenen vanaf eind negentiende eeuw tot halverwege de twintigste eeuw de bekende schoolwandplaten die de wording van het moderne Nederland laten zien. Hier: Scheepswerf aan de Nieuwe Maas bij Rotterdam, in 1926 geschilderd door Johan Dijkstra in opdracht van de toen nog aparte uitgeverij J.B. Wolters uit Groningen. De schoolplaat is deel van de serie ‘Nederland in woord en beeld’.

[GraanelevatorRotterdam_img062.jpg]

Graanelevatoren aan het werk in de Maashaven te Rotterdam, in 1912 geschilderd door Bernardus Bueninck. De komst van goedkoop Amerikaans graan in combinatie met broodfabrieken deed de levensverwachting van de Nederlander na 1850 snel stijgen. (Met dank aan Noordhoff Uitgevers)

[Veendam_img034.jpg]

Veendam, 1904, door Bernardus Bueninck. (Met dank aan Noordhoff Uitgevers)

[IndustriestadEnschede_img038.jpg]

Industriestad Enschede, 1922, door Johan Dijkstra. (Met dank aan Noordhoff Uitgevers)

[IJsselbijKampen_img041.jpg]

De IJsseldelta bij Kampen, 1917, door Bernardus Bueninck. (Met dank aan Noordhoff Uitgevers)

[Rembrandtplein_img044.jpg]

Het Rembrandtplein 1911, door Bernardus Bueninck. (Met dank aan Noordhoff Uitgevers)

{VliegveldSchiphol_img049.jpg]

Het vliegveld Schiphol, 1952, door Riekele Prins. (Met dank aan Noordhoff Uitgevers)

[PolderZuidHolland_img053.jpg]

Polderlandschap in Zuid-Holland, 1917, door Bernardus Bueninck. (Met dank aan Noordhoff Uitgevers)

[IJmuidenHoogovens_img162.jpg]

De hoogovens in Velsen, door Riekele Prins, 1951. (Met dank aan Noordhoff Uitgevers)

[Staatsmijnen_img068.jpg]

De mijn Maurits bij Sittard, 1931, door Johan Gabrielse. (Met dank aan Noordhoff Uitgevers)

 

Vage logica onzichtbaar overal aanwezig (1996, nr. 9) FUZZY LOGICS IN CONSUMENTEN-ELEKTRONICA + TOEPASSINGEN IN INDUSTRIËLE PROCESBESTURING + OOK IN: VERKEERSMANAGEMENT, BEVEI­LIGING STROOMNET, (FINANCIËLE) BESLUITVORMING

FuzzyLogic vagelogicakaderOMSLAGARTIKEL

 

FUZZY LOGICS IN CONSUMENTEN-ELEKTRONICA + TOEPASSINGEN IN INDUSTRIËLE PROCESBESTURING + OOK IN: VERKEERSMANAGEMENT, BEVEI­LIGING STROOMNET, (FINANCIËLE) BESLUITVORMING

 

Nederland dreigt achterop te raken

 

Vage logica onzichtbaar overal aanwezig

 

Het deze maand opgerichte DICI (Delft Institute for Computational Intelligence) moet helpen voorkomen dat Nederland achterop raakt in de vage logica, de wiskundige aanpak die tegenwoordig een sterke invloed heeft in de meet- en regel­tech­niek, maar inmiddels ook zijn invloed doet gelden op veel andere gebieden van wetenschap en technologie, zoals de ontwikkeling van ken­nissys­te­men.

– Erwin van den Brink –

 

De auteur is redacteur van De Ingenieur.

 

 

Nederland heeft volgens prof.ir. H.B. Verbruggen van de faculteit Elektrotechniek van de TU Delft ten opzichte van Japan, de VS en Europese landen waaronder vooral Duitsland een achter­stand in de toepas­sing van vage logica of fuzzy logics. In Duitsland zijn grote bedrijven actief op dit gebied zoals Siemens en Klöckner-Müller, maar ook veel kleine bedrijven.

In Nederland valt vooral bij de produkt­ont­wikke­ling in het midden- en kleinbe­drijf nog een hoop zendings­werk te verrichten ondanks inspan­ningen van instellin­gen zoals het Centrum voor Micro-Elektro­nica (CME). DICI beoogt voor bedrijven de weg te effenen naar toepasbare kennis (bij de TU en TNO) over vage logica en meer in het algemeen over computational intelligence.

Wat is vage logica? De wiskundige methode is het eerst toegepast in de regeltechniek. Waarom? Mensen regelen eigenlijk alles vaag, dat wil zeggen niet met exacte waarden. De proces­opera­tor die ’s morgens onder de douche staat regelt volgens de ‘als-dan’-regel die zo kenmerkend is voor vage regeling: ‘Als het water me te heet is, dan meng ik een beetje koud bij’, maar vraag hem niet wat ‘te heet’ is en wat ‘een beetje koud’. Als hij om negen uur plaats neemt achter zijn controle­paneel in de zeeppoeder­fa­briek doet hij vaak onbewust iets soortge­lijks. Boven in een droogkolom zit een sproeikop die zeepsus­pensie in druppels verspreidt die onderin moeten neerdalen als vlokken van ongeveer gelijke grootte; derhalve een proces met vage (namelijk ‘ongeveer’) regelaspecten. Weliswaar is het proces voorzien van een aantal conventionele PID-regelaars ­(zie Kader), maar een aantal regelkringen wordt door de proces­opera­tor bestuurd.

‘De operators hebben in de loop der jaren zo veel ervaring opgebouwd, dat het proces redelijk in de hand te houden is’, legt Verbruggen uit. ‘Toch gaat het wel eens mis. Er doen zich onvoor­zie­ne omstandigheden voor, een operator heeft zijn dag niet, zijn inschatting is onjuist geweest. Als je hem vraagt wat voor regels hij hanteert, dan weet hij dat niet eens precies. Door de operator gade te slaan kunnen we verban­den ontdekken tussen de te regelen grootheden en bepaalde externe omstandig­heden zoals temperatuur en voch­tigheid. Die verbanden hebben een ‘als-dan’-karakter. Dat is een andere beschrijving dan een fysisch of mathematisch model waaraan technici doorgaans gewend zijn.’

 

‘Short cut’

De verbanden zijn niet lineair, maar ‘vaag’, rekkelijk, elastisch als het ware, net als in de alledaagse werkelijkheid waar we verbanden aangeven in taal en niet in wiskunde. Verbruggen: ‘Zo’n linguïstisch model kan daarom de werkelijkheid van een proces heel goed beschrijven. Soms is het zelfs de enige mogelijkheid om een systeem te beschrijven. Of het zou volgens de klassieke methode een enorme exercitie zijn. Ver­taald in hard­ware zou dat enorme rekencapaciteit vergen. Vage logica is in die zin een short cut die even goede resul­taten oplevert met gebruik­making van bescheiden modellering en idem dito reken­kracht.’

Voor de moderne industriële procesbesturing is vage logica dan ook bijzonder geschikt. ‘Dank zij toepassing van vage logica kunnen menselijke ervaring en geleidelijkheid van overgangen tussen verschillende regelacties goed in een besturingssysteem worden verwerkt’, aldus Verbruggen.

Elektronische circuits, kleppen, ventielen en motoren kunnen echter niet met deze ‘als-dan’-regels en vage infor­matie uit de voeten. Zij zijn afhankelijk van harde waarden.

Exacte meetwaarden worden daarom eerst omgezet in vage grootheden zoals ‘heet’, ‘warm’ of ‘koud’. Een besturingssysteem dat werkt met ‘als-dan’-regels gebaseerd op vage logica, neemt dan een ‘vage’ beslissing zoals ‘voeg een beetje koud water toe’. Voor de aansturing van kleppen en ventielen moet die vage beslissing worden vertaald in een hard, crisp, getal: dit heet defuzzificatie, ‘ontvaging’.

Het mooie van vage logica is dat die omzetting van menselijke waarneming en besturing naar kunstmatige besturing veel natuurlijker is, veel meer aansluit bij de wijze waarop wij zelf met kennis omgaan, dan andere vormen van transforma­tie die voornamelijk zijn gebaseerd op ‘klassieke’ mathematische modellen zoals diffentiaalvergelijkingen .

 

Soepeler regelgedrag

Fuzzificatie is nodig om de transformatie te verzorgen van het crispe domein (bijvoorbeeld 35 °C) naar het vage domein (warm, heet of aangenaam). Verliezen we dan niet enorm veel informatie? Wel als onze indeling star is, harde grenzen heeft zoals 25…35 °C is aangenaam, 35…50 °C is warm en hoger dan 50 °C is heet. Maar dat is niet zo: vage verzamelingen overlappen elkaar namelijk gedeeltelijk, waardoor een temperatuur zowel aangenaam, warm als heet kan zijn, zij het in verschillende mate. Die mate waarin een temperatuur behoort tot een vage verzameling is een ander kenmerk. In de vage logica heet dat de ‘lidmaatschapsfunctie’ en zij wordt uitgedrukt in een fracti­oneel getal van 0 tot en met 1. De functie heeft vaak een trapezi­um- of piramidevorm. Waar de trapezia, dan wel pyrami­den, elkaar overlappen, zie je dat oplopen­de waarden in afne­mende mate behoren tot de ene verzameling en in toenemende mate tot de andere: de overgang is geleidelijk, vaag.

Door te rekenen met zulke vage verzamelingen krijg je een over het algemeen soepel regelgedrag. De regeling is rustiger­ omdat de instel­waarden veel geleidelijker veran­deren. Een buschauffeur rijdt ook niet exact midden op de rijbaan, die nooit zuiver kaarsrecht is. Zou hij dat wel doen, dan werden zijn passagiers waar­schijnlijk wagen­ziek van het ge­slinger. Derge­lijk stuurgedrag zien we terug bij handmatige procesbestu­ring, maar ook in met fuzzy logics geregelde autofo­cussystemen van (Japanse) video­- en fotocamera’s.

 

Kennissystemen

Japanners waren de eer­sten die fuzzy logics – ‘foezai’ in Anglo­japans – op grote schaal toepas­ten in (draagbare) consumenten-elektronica. Europeanen pasten eerder al fuzzy logics toe in regelsystemen in de cementindustrie.

Vage logica vergt aanzienlijk minder rekencapaci­teit. De benodigde micro-elektronica is daardoor compacter te houden. Verbruggen: ‘Samen met mijnbouwkunde hebben we de slijtage van een tren­cher, een sleuvengraver, beschreven. Hoe snel de tanden op de graafketting verslijten is afhankelijk van de bodemgesteld­heid; die is niet exact te omschrijven, maar duidelijk is wel het causale verband tussen bijvoorbeeld de grootte van de te ontgraven rotsblokken en de slijtagesnelheid: if blocksize is small then bitconsumption is small, waarbij bitconsumption staat voor de slijtage van de graaftan­den. Zo hebben we een model gemaakt met zestig regels die heel goed de slij­tage beschrij­ven, zodat je weet hoeveel reserveon­derdelen er nodig zijn.’

Ook is vage logica bruikbaar voor expert- en decision support-­systemen die redeneren op basis van kennis die gerepre­senteerd kan worden in ‘als-dan’-regels. In verzekerings­bedrijven kunnen kennissystemen worden gebruikt voor het berekenen van de risico’s en dus van de premies (zie De Inge­nieur, nr. 15 van 27 september 1995, blz. 26-29). Daarnaast is vage logica geschikt voor systemen die vage contouren en patronen moeten herkennen, bijvoor­beeld een systeem dat hand­ge­schre­ven tekst kan ‘lezen’ of een systeem dat in staat is om op een satellietop­name bewolking van een bepaald type te herkennen.­

Een dergelijk patroonherkenningssysteem zou weer onder­deel kunnen zijn van een veel groter kennissysteem dat uiteindelijk in staat zal zijn weersverwachtingen te maken, legt dr.ir. J.C.A. van der Lubbe uit. Hij is verbon­den aan de vakgroep Informa­tietheorie van de faculteit Elek­trotechniek TU Delft en een van de initia­tiefne­mers van DICI. Meteo­rologi­sche ken­nis, vooral het interpreteren van satelliet­beelden, heeft vage aspecten; wanneer is sprake van een wolk, van sluierbewolking en wanneer van heiig weer?

In zo’n kennissysteem wordt, anders dan bij procesbesturing, geen output teruggekop­peld. Het weer valt immers niet te regelen. Er kan wel een terugkoppe­ling achteraf in worden opgeno­men waarbij het systeem kijkt in hoeverre de opgegeven weersverwachting is uitgekomen en waar dat aan ligt. Dit leren kan met bijvoorbeeld neurale netwerken (zie De Inge­nieur nr. 20 van 6 december 1994, blz. 6-10), in dit geval fuzzyneurale net­wer­ken (omdat zij niet altijd op vage logica gebaseerd hoeven te zijn).

 

Achterstand

Van der Lubbe werkt samen met het KNMI (Koninklijk Nederlands Meteorologisch Insti­tuut) en het NLR (Nationaal Lucht- en Ruimtevaart­laboratorium) aan een systeem voor meteorologen dat automatisch weersatel­liet­beelden interpreteert.

Van der Lubbe: ‘Om te zeggen dat Nederland hopeloos achterloopt is te sterk uitgedrukt, maar in het bui­tenland is men veel verder. In Duitsland bijvoorbeeld bestaan al veel grote door de overheid gesteunde samenwer­kingsverbanden. Daar wordt alles ingezet op vage logica. Het is verbazingwekkend dat wij in Nederland niet voortva­render zijn.’

‘We zijn in Nederland vrij goed in fundamenteel onderzoek, maar vage logica wordt niet als zodanig gezien; als zuiver wiskun­dige behoor je je er niet mee bezig te houden’, zo verklaart Ver­bruggen het gebrek aan belangstelling voor vage logica. ‘In Duitsland is men toch pragmati­scher. Dat is een land waar spullen gemaakt moeten worden. Vage logica komt daarbij van pas. Wij zijn geen maak­land.’ Van der Lubbe denkt dat de Duitse cultuur, waarin men wat filosofischer is ingesteld, een vrucht­baarder bodem is voor vage logi­ca.

Vage logica bete­kent niet alleen een fundamenteel andere benadering van het oplos­sen van meet-, regel- en besturingsproblemen, maar is volgens Van der Lubbe ook een breuk in het Westerse Cartesiaanse denken: de tegenstelling tussen ener­zijds de werkelijkheid en anderzijds het beeld dat wij hebben van de werkelijkheid; een typische vorm van bipolair denken: iets is waar of niet waar. In het Oosterse denken heeft nooit zoiets bestaan als de klassie­ke logica. Mogelijk verklaart dat waarom vage logica daar zo’n hoge vlucht heeft genomen.

De fractionele getallen, waarin vage logica uitdrukt in welke mate iets behoort tot een bepaalde verzameling, interpre­teren wij westerlingen al gauw als kansgetallen, statistiek: in ons wiskundig denken is gewoon geen plaats voor nuanceringen in termen van ‘een beetje waar’.

Van der Lubbe: ‘Mensen zijn in het dagelijkse leven meesters in het omgaan met vaagheid, maar we leren het af in de wiskunde.’

Toch werd al in de Europese klassieke oud­heid behalve aan klassieke logica ook veel gewerkt aan vage logica, door Plato en Aristoteles; Plato onderscheidde gradaties tussen waar en on­waar. Van der Lubbe: ‘Nu langzamerhand het Cartesiaanse denken op de helling wordt gezet, ontstaat ook hier meer ruimte voor vage logica. Alleen binnen de technische universiteiten hebben we daar nog moeite mee. Buiten de TU’s tref je nauwe­lijks nog Cartesianen aan. Daar is men al lang af van het bipolaire denken in begrippen zoals waar en onwaar.’

 

 

 

 

(BIJSCHRIFTEN)

 

(BIJ OPENINGSBEELD DIA HOLLANDSE HOOGTE + OPENGEWERKTE CAMERA)

Op grote schaal werd fuzzy logics voor het eerst toegepast door de Japanners in consumenten-elektronica.

(Foto’s: Roberto Rizzo/HH, Amsterdam; Canon, Hoofddorp)

 

 

 

 

(QUOTE BIJ PORTRETFOTO)

‘Mensen zijn in het dagelijkse leven meesters in het omgaan met vaagheid, maar we leren het af in de wiskunde’, prof.ir. H.B. Verbruggen (links) en dr.ir. J.C.A. van der Lubbe

(Foto: Michel Wielick, Amsterdam)

 

 

(BIJ FOTO 1 EN 2)

Bij TNO en de TU Delft is een robotarm ontwikkeld die wordt bestuurd met vage logica; de arm is een hulpmiddel voor gehandicapten.

(Foto’s: TNO TPD, Delft)

 

 

(BIJ FOTO 3)

Met behulp van fuzzy logics is de slijtage van een sleuvengraver beschreven; aan de hand van een model met zestig regels kan worden bekeken hoeveel reserveonderdelen er nodig zijn.

(Foto: Vermeer International, Goes)

 

 

 

 

 

(KADER)

Onderzoek

 

DICI houdt zich bezig met afstemming van onder­zoek en onderwijs op het gebied van vage logica, neurale netwerken, neurofuzzy algoritmen, approximate reasoning, fuzzy expertsystemen, genetische en evolutionaire algoritmen en chaotische systemen. DICI richt zich behalve op meet- en regeltech­niek en patroon­herkenning ook op nieuwe toepassingsgebieden zoals foutdetec­tie en -diagnose, maatschappelijke problemen, onder­steuning van besluitvorming, financiële be­slisproblemen en planning- en schedulingproblemen.

Informatie: prof.ir. H.B. Verbruggen (E-mail: verbruggen@et.tu­delft.nl) of dr.ir. J.C.A. van der Lubbe (E-mail: vdlub­be@et.tudelft.nl), TU Delft, faculteit der Elektrotechniek, postbus 5031, 2600 GA Delft, fax (015) 278 66 79.

 

 

 

 

 

(KADER)

Fuzzy regelaar

 

Bij een PID-regelaar staat ‘P’ voor het stuursignaal dat evenredig, proportioneel, is met het foutsignaal. De ‘I’ staat voor de regelactie ‘integreren’: de regelaar kijkt terug in de tijd naar het verloop in het verschilsignaal door dit te integre­re­n. Op den duur zorgt deze regelactie ervoor dat het foutsignaal nul wordt. De ‘D’-regelac­tie differen­tieert het verschil­signaal: het meet de komende verandering en stemt daar de sturing op af.

In een PID-regelaar kunnen echter geen vage causaliteiten tussen subjectieve noties worden opgenomen zoals ‘als water te heet, dan een beetje koud bijmengen’. Daarvoor is vage logica nodig.

Op 19 april 1996 had in Leeuwarden een symposium plaats, georgani­seerd door de Noordelijke Hogeschool Leeuwarden, waar prof.ir. H.R. van Nauta Lemke, oud-hoogle­raar regeltechniek in Delft en in Nederland sinds begin jaren zeventig pleitbezorger van vage logica, de werking van een (willekeu­rige) vage regelaar uiteenzette.

Het voorbeeld heeft betrekking op een eenvoudig proces met een enkele in- en uitgang, geregeld door een fuzzy regelaar (afbeel­ding 1) die gebruik maakt van een proportione­le en een differenti­ërende regelactie. Van belang zijn het verschilsignaal E en de afgeleide dE. E is het verschil tussen de gemeten en gewenste waarde terwijl dE de verandering weergeeft van E. Beide worden gemeten en als ingangssignaal voor de regel­aar ge­bruikt, terwijl de uitgang U van de regelaar de (bij)sturing is van het proces.

Aangezien de meetwaarden E en dE in geval van een technisch proces niet vaag zijn maar hard, of crisp, moeten de grootheden eerst worden geclas­sificeerd, dat wil zeggen worden onder­gebracht in vage verzame­lingen. Die verzamelingen komen over­een met subjectieve noties zoals ‘groot’ en ‘klein’. Een meetwaarde is dan zowel groot als klein, maar in een verschillen­de mate die varieert van 0 tot 1 (of 0 % tot 100 %). De waarde is bijvoor­beeld met een mate van 0,4 ‘groot’ en een mate van 0,8 ‘klein’; de verschillende lidmaatschapsfuncties zijn niet elkaars complement, hun som hoeft niet atijd 1 te zijn.

We gaan er in dit voorbeeld vanuit dat vijf vage verzamelingen worden gedefi­nieerd voor zowel het signaal E als de afgeleide dE (afbeelding 2). De namen van die verzamelingen zijn negatief groot (NB), negatief klein (NS), ongeveer nul (Z), positief klein (PS) en positief groot (PB).

De sturing U wordt geclassificeerd in zeven vage verzamelin­gen (afbeelding 3): negatief groot (NB), negatief gewoon (NM), negatief klein (NS), ongeveer nul (Z), positief klein (PS), positief gewoon (PM) en positief groot (PB).

Het kennissysteem bevat de logische kennis over de besturing van het proces, in de vorm van kennisregels die vertellen wat er moet gebeuren in termen van ‘al­s-dan’-regels: ‘Als A, dan B’ Een voor­beeld van een dergelijke kennisregel is: als de fout E positief klein (PS) is en de veran­dering van de fout, dE, is onge­veer nul (Z), dan moet de sturing U positief klein (PS) zijn.

Tegelijkertijd kan op de gemeten waarde E echter ook een andere kwali­ficatie van toepassing zijn, zij het doorgaans in een andere mate of met een andere lidmaatschapsfunctie. Bijvoorbeeld: E is positief groot. Zoiets geldt ook voor dE: die waarde kan tege­lijker­tijd posi­tief klein zijn. Er zijn derhalve ook gelijk­tijdi­g meer kennisregels van kracht, zij het in verschil­lende mate. De geldigheid van de gelijktijdige regels, in casu de stuurwaarde U die uit elke regel voortvloeit, wordt eveneens gewogen in ‘waarheidsgraden’ van 0 tot 1. Uit die weging wordt uitein­delijk een definitieve ‘harde’ stuurwaar­de herleid.

Zowel E als dE behoren elk tot vijf vage verzame­lin­gen en dus zijn 25 kennisregels mogelijk, gerangschikt in een matrix (afbeelding 4). Meer informatie bevat het toe­standsvlak (afbeelding 5) waarin E en dE tegen elkaar zijn afgezet. De gear­ceerde stroken zijn de geleidelijke overgangen tussen de vage verzamelingen. De romeinse en arabische cijfers duiden de vage verzamelingen aan van E respectievelijk dE, de letters die van U.

Het zogenoemde ‘inferentiesysteem’ bepaalt welke van deze 25 regels in een bepaalde situa­tie van belang zijn. Voor de waarden van E en dE op tijdstip 1, E1 en dE1 zijn twee regels relevant waar­bij de lidmaatschap­s­functie tussen haakjes staat:

-als E is positief klein (0,75) en dE is positief klein (1), dan is U positief medium;

-als E is positief groot (0,25) en dE is positief klein (1), dan is U positief groot.

De geldigheid van de regel, in casu van de voorgeschreven stuuractie U, is uit oogpunt van voorzichtigheid doorgaans gelijk aan de laagste waarde van de twee lidmaatschapsfuncties die horen bij E en dE. Hoe de waarden van E en dE worden getransponeerd naar U is te lezen in afbeelding 6.

Een tweede taak van het kennissysteem is: uit de geldigheid van de relevante kennisregels de resulterende sturing berekenen. U wordt als het ware bepaald uit een gewogen gemiddelde van de sturing die door de actieve regels wordt voorge­schre­ven. Een manier is de zwaartepuntmethode. We nemen de omtrek­ken van de twee grafieken die de verzamelingen U is positief klein en U is positief medium weergeven. Deze grafieken toppen we af op achtereenvolgens 0,75 en 0,25. Van de samengevoegde figuur die zo ontstaat nemen we het zwaartepunt; dát nu komt overeen met een harde, specifie­ke, stuurwaarde U.

 

 

(BIJSCHRIFTEN TEKENINGEN KADER)

 

Afb. 1

 

Afb. 2

 

Afb. 3

 

Afb. 4

 

Afb. 5

 

Afb. 6